JPL D-7669, Part 2

Planetary Data System
Standards Reference

March 20, 2006
Version 3.7

PDS
BN

Planetary Data System

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(This page intentionally left blank.)

Table of Contents i

Chapter 1.
1.1
1.2
1.3
14
1.5
1.6
1.7

Chapter 2.
2.1
2.2
2.3
2.3.1
2.3.1.1
2.3.1.2
2.4
2.5
2.6
2.7

Chapter 3.
3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9

Chapter 4.
4.1

Chapter 5.
51
5.1.1
51.2
5.2
521
522

PDS Standards Reference
Table of Contents

INErOAUCTION. ... i 1-1
PDS Data POIICY........eiiiiiiiiiiiecee e 1-1
PUIPOSE ... 1-1
{0l 0] 0TSO OPPRPTPP 1-1
AUGIENCE ..ttt e st e et e e e be e e e neee s 1-1
Document Organization............c.eeeiueeeiiiee e siee e seee e 1-2
Other Reference DOCUMENTS..........coiiieieiiiie e 1-2
Online Document Availability..........ccccoviiiiiiniii e 1-3
Cartographic Standards............ccoccveeiiiiiiieei e 2-1
Inertial Reference Frame, Time Tags and UNitS..........ccccoevieiiiieiiinnnne, 2-1
Spin Axes and Prime Meridianscoooveeiiieeiiien e 2-1
Reference COOMdINALEScoiiieieiiiie e 2-1
Body-Fixed Coordinate SYStEmMSccccevviiiiiiieiiiieiiiie e 2-3
PlANELOCENTIIC ... ei it 2-3
PlanetographiC.........ooiiiieiiiii e 2-3
RIS ettt rre e 2-3
RETErenCe SUIMTACEcouiiiiiie e 2-5
MaP RESOIULION ... 2-5
RETEIENCES. ... 2-5
DATA_TYPE Values and Data File Storage Formats...........c........... 3-1
Data EIBMENTS ..o s 3-1
DAL TYPES ..ttt 3-1
BINAIY INTEOEIS ..ot 3-4
Signed vs. UNnSIgNed INTEQETS.uviiiiieiiiee et 3-4
Floating POINt FOrMALSeeeiiiiiiiiieiiie e 3-5
BiIt STrING DAa ...ccovveeeiiiieiiiie et 3-5
CharaCter DAtacceeeiiiiiiiiee e 3-5
Format SPeCIfICAtIONS........ccuviiiiiie i 3-5
Internal Representations of Data TYPESeevveereriveeeiiie e 3-6
Data Objects and Productscccooceeeiiiiniiee e 4-1
Data Product File Configurationsccccveiiiieiiiieiiiie e 4-2
Data Product Labels............oooiiiiii e 5-1
Format of PDS LabelSoooiiiiii e 5-1
Labeling Methods.........ccoviiiiii e 5-1
Label FOrmat.........oooieioi 5-1
Data Product Label Content............cccooiiiiiiiiiiiiii e 5-4
Attached and Detached Labels...........ccocoeeiiiiiiinii e 5-4

Combined Detached LabelS..........o oo, 5-4

5.2.3
5.23.1
5.2.3.2
5.3
531
5.3.2
5.3.3
5331
5.3.3.2
5.3.3.3
5.34
5.34.1
5.34.2
5.3.4.3
5.35
5.3.6
5.3.7
5.4

5.5
5.5.1
5.5.2
5.5.3

Chapter 6.
6.1
6.2
6.3
6.3.1
6.3.2
6.4

Chapter 7.
7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2

Chapter 8.
8.1
8.2
8.3
8.4
8.5

Table of Contents

MINIMAal LabEIS ... 5-6
Implicit File Object (Attached and Detached Minimal Label).......... 5-8
Explicit File Object (Detached Minimal Label)............cccccooeeiiiens 5-8

Detailed Label Contents DeSCIPtioNccceevuveeiiireiiiiee e 5-8

Label Standards 1dentifiers ... 5-9

File Characteristic Data EIements..........cccccovveeeiiieniiieeiiee e 5-10

Data ODJECE POINLEIS.vvieiiiie et 5-11
Use of Pointers in Attached LabelS.........ccocveiiiiiiiiiiiie e, 5-11
Use of Pointers in Detached and Combined Detached Labels......... 5-12
Note Concerning Minimal Attached and Detached Labels............. 5-14

Data Identification EIEMENtScccoeviieriiiniiiie e, 5-14
Spacecraft Science Data Products...........cccocveeviiiiiiiiniiiee e 5-15
Earthbased Science Data Productsccceeviieiiienniieeniee e, 5-15
AnNcillary Data Products..........c.coooueriiiiiiiiieeniie e 5-15

Descriptive Data EIEMentsoooiviiiiiiiiie e 5-16

Data Object DefinitioNS.........ccoiiiiiiiiieiiiee e 5-16

ENd SatemMENT.....cooiiiiie e 5-17

Syntax for Element Values ..., 5-17
Locally-defined Data EIEMENtS..........ccocueeeiiiiiiiiieiiie e 5-18
Justification for Locally-defined Data Elementsc.ccccceerinenne 5-18
Identification of Locally-defined Data Elements...........c.cccccceeennennne. 5-20
Review and Use of Locally defined Data Elements..............ccccccvee.. 5-20
Data Set/Data Set Collection Contents and Naming...........c.cccceeevee. 6-1
Data Set Naming and 1dentifiCation.............ccccoveeriiieniiiin e 6-2
Data Set Collection Naming and Identification............c.ccccooeeiiiieennnen. 6-3
Name and ID COMPONENTSeeeiiiieiiiieeiiie e 6-4

Restrictions on DATA_SET_ID and DATA_SET_COLLECTION_ID............ 6-4

Standard Acronyms, Abbreviations, and Assignments..............c.ccue.. 6-4
EXAMPIES ..o s 6-8
Date/Time FOrmMat........cooiiiiiiiiieiie e 7-1
DALE/ TIMES. ..c ittt ettt e et e e snree e 7-1
DS ... rnnnes 7-2

ConNVENLIONAl DALESooiuvieiiiiiei it 7-2

NALIVE DALES. ... eeieiieie e 7-2
I 1P TPSPP 7-2

ConVveNntional TIMEScoiuiiiiiiie e 7-2

NALIVE THMES ...t e e eaeeeans 7-3
Directory Types and NaminNg.........ccoovveeriieeiiiee e 8-1
Standard DireCtory NAMES........coocuviiiiiieiiiie et 8-1
Formation of DireCtory NaMESeeivviieiiiieiiiie s 8-2
Path Formation Standardcccooveeriiiie e 8-4
TAPE VOIUMES ...t 8-4

Exceptions to These Standardscccoveiviiieiiieiic e 8-4

Table of Contents iii

Chapter 9.
9.1
9.1.1
9.1.2
9.2
9.2.1
9.2.2
9221
9.2.2.2
9.2.2.3
9.2.3
9.24
9.3
9.3.1
9.3.2
9.33

Chapter 10.
10.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2
10.2.3
10.3

Chapter 11.
111
1111
11.1.2
11.2
11.2.1
11.2.2
11.2.3
11.3
114

Chapter 12.
12.1
12.1.1
12.1.1.1
12.1.1.2
12.1.1.3
12.1.2

DOCUMIBNTS ... 9-1
PDS ODbjects for DOCUMENTS........coeiiieiiiiie e 9-2
TEXT ODBJECES ..ottt 9-2
DOCUMENT ODBJECLSeeeiieieiiiie i 9-2
Document Format Details............coouiiiiiiiiiiiee e 9-3
FIAt ASCHE TeXL....iiiieei e 9-3
ASCII Text Containing Markup Languageccccoveveeeiiieeiiiieesnineene 9-4
Hyper-Text Markup Language (HTML) FileS........ccccoooeiiiiiennnennne 9-4
LOCatioN Of FIIES......coceiiiiiieiiee e 9-4
Discouraged HTML 3.2 Capabilitiescccooveiviieniiiiiiiie e, 9-4
NON-ASCH FOIMALS ... e 9-5
ValidALION ..eeeeiiiiiecc e 9-5
EXAMPIES ... 9-5
Simple Example of Attached label (Plain ASCI Text)ccccocoveeenneen. 9-5
Complex Example of Detached Label (Two Document Versions) 9-5
Complex Example of Detached Label (Documents Plus Graphics).....9-6
File Specification and Namingcccccceeviiiriiiee e 10-1
File Specification Standardscccoviiiiiiiinne e, 10-1
ISO 9660 Level 1 Specification..........ccccveviieeiiiieiiiie e 10-2
ISO 9660 Level 2 Specification...........ccveviveeiiiee i 10-2
Reserved Directory Names, File Names and Extensions...................... 10-2
Reserved DireCtory NaMESc.eveiiiieiiiiee e eiiee e 10-3
Reserved File NamMeS........coooiiiiiiiiieeiee e 10-3
RESErVed EXIENSIONS.uviiiiiieiiie e 10-3
Guidelines for Naming Sequential Files............ccoooiiiiiiiiiiiieeies 10-5
Media Formats for Data Submission and Archive...............c.c.c.e.. 11-1
CD-ROM ReCcOMMENUALIONS.coeiiiieiiiieiiiiesiiee e 11-1
Use of Variant FOrmatsccooveeiiiiiiiiie e 11-1
Premastering Recommendationcoccveevieeeiiieeiiiee e 11-2
DVD ReCOMMENUALIONS.......ccoiiiiiiiieeiiiie et 11-2
Use of Variant FOrmatscoooveeiiiiiiiiee e 11-2
Premastering Recommendationcoccvevvvieiiiieniiiee e 11-2
Recommended DVD FOIMALS.........cccceeiuieeiiieeiiiee e 11-2
Packaging Software Fileson a CD of DVD........ccccooieiiiieiiiieeeiiee, 11-2
Software Packaging Under Previous Versions of the Standard............. 11-2
Object Description Language Specification and Usage 12-1
About the ODL SpecCificationccoovveiiiiiiiiiee e 12-1
IMPIEMENtING ODLoeiiiiiii e 12-2
Language SUDSELS.........oviiiiiiiie et 12-2
LangQuAge SUPEISELSceiiiiiiieeiiiiiee et e e et e et 12-2
PDS Implementation of PVL-Specific EXtensionscccoc..... 12-2

N OTALION <.ttt e e e e e e e e e aeaan 12-3

12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.3
12.3.1
12.3.1.1
12.3.1.2
12.3.1.3
12.3.2
12.3.2.1
12.3.2.2
12.3.2.3
12.3.2.4
12.3.2.5
12.3.25.1
12.3.3
12.3.3.1
12.3.3.2
12.3.4
12.3.4.1
12.3.5
12.4
1241
12.4.2
12.4.3
12.4.4
12.4.4.1
12.4.5
12.45.1
12.4.5.2
12.5
1251
12.5.2
125.2.1
12.5.3
1253.1
1253.1.1
125.4
125.4.1
12.5.4.2
12.5.5
12.5.6

Table of Contents

CRAraCEr SEL......eeiiiiiieeeee e 12-3
ODL Character Set - LEttersS........ccoveivvieiieieeiiie e 12-4
ODL Character Set - DIgISoovuieeiiiieiiiee e 12-4
ODL Character Set - Special Characters...........ccooceevieeeniieeiiieenen. 12-4
ODL Character Set - Spacing Characters..........ccocoveevveeenieeeiieeennnnn. 12-5
ODL Character Set - Format Effectors............ccccevveiiiiiiiiieciiee 12-5
ODL Character Set - Control Characters...........ccoceeevieeiiieeiiieeeen, 12-6

LexiCal EIBMENTS.......coiiiieiiiiecee e 12-6
NUMDBES. ..t e e nneee s 12-6

Integer Numbers in Decimal Notation............c.ccococeiieeiiiieiniinne, 12-6
Integer Numbers in Based NOtationccoccceevviieiiieeiiiee i, 12-7
Real NUMDEIS........ooiiiii e 12-7
DatesS aNd THMES.......eviiiiiee it 12-8
Date and TiMe VAlUEScoouiiiiiiieiiie e 12-8
Implementation of Dates and TIMES.........cccoovvveiiiiiiiiieenee e 12-9
PDS Implementation of Dates and TIMeS..........cccccovverviieriineennn. 12-9
DALES ...t 12-9
THMES e e e 12-9
Combining Date and TiMe.........cccceiiiiiiiiieeiie e 12-10

ST INIGS ettt aaee e 12-10
TOXE SEINGS . .eeeeiiiee ettt 12-11
SYMDOI SEIINGS . 12-11
TABNEITIEIS . 12-11
Reserved 1dentifiers. ... 12-12
Special CharaClers.........oocvii i 12-12

SEALEMENTS. ... 12-12
Lines and RECOIASccuuviiiiiiieiiie e 12-13
Attribute Assignment Statement...........ccccooeeiiiniien e 12-14
Pointer StatEMENTcooiieiiiie e 12-15
OBJECT STatemMENTooiiiiiiieeiiiii e 12-15

Implementation of OBJECT Statementsococveevieeeiieeeiiinnnns 12-16
GROUP STAteMENLooiiiiiiiiee it 12-16
Implementation of GROUP Statementscoccceeevveeeiiieininnnns 12-17
PDS Usage 0f GROUPcooiiiiiiieiiie e 12-17

WAIUBS ... 12-17
NUMETIC ValUBS....coiiiiiiiiie e 12-18
UNIES EXPrESSIONSviiiiiieiiiie e eiiie ettt 12-18

Implementation of Numeric Valuesccocoeeiviiiiieeiiiie e, 12-18
TeXt StrNG ValUBS........eoiiiiiiiiie e 12-19
Implementation of String Valuesccccceviiiiniieeceeis 12-19
PDS Text String Formatting Conventions............cccccceeviiveeennee. 12-20
Symbolic Literal Values...........coooueiiiiiiiiiieee e 12-20
Implementation of Symbolic Literal Values.............cccccevvenninnn, 12-21
PDS Convention for Symbolic Literal Values.............cccccceueeene. 12-21
SBOUEBIICES ..ttt ettt et e e e et e e et e e e nneeas 12-21
S ittt 12-22

Table of Contents Vv

12.5.6.1
12.6
12.7
12.7.1
12.7.1.1

12.7.1.11
12.7.1.1.2

12.7.2
12.7.2.1
12.7.3

Chapter 13.

131
13.1.1
13.2
13.2.1

Chapter 14.

141
1411
14.1.2
14.1.3
14.2

Chapter 15.

15.1
15.2
15.3
154

Chapter 16.

16.1
16.2
16.3
16.4

Chapter 17.

17.1
17.1.1
17.1.2
17.1.3
17.2

Chapter 18.

18.1

PDS ReSEIICtIONS ON SELSeeiiiiieiiiie et 12-22
ODL SUMMAIY ...ttt e e e 12-22
Differences Between ODL VErSIONS.........ccccveiiieeiiieeiiieesieee e 12-24

Differences from ODL VEersion 1ccccceeviieeiiiieiiiee e 12-24
RANGES. .. 12-25
Delimiters in Sequences and Sets..........cccocveeriieriiieeiniee e 12-25
Exponentiation Operator in Units EXPressions............ccccveeveeenn 12-25
Differences from ODL VEersion 0cccceevieeiiieeiiiee e 12-25
Date-Time FOrmMat........cooiiiiiiiiieiie e 12-25
ODL/PVL USAQE ... vvieeiiiieeiiiie e siiee e siiee ettt sitee et snaee e anes 12-26
PDS ODJECES / GrOUPS ..eeeieieeiiiieeiiiie ettt 13-1
Generic and Specific Data Object Definitions...........ccccevvveeiiieeiiineenne 13-1
PrimItive ODJECES......uviiieie s 13-2
Generic and Specific Data Group Definitions...........ccccoevveeiiieeiiinenne 13-3
Implementation of Group Statements............cocceeiiieeeiiee i, 13-4
POINTEE USAQE. .. ciiiiieiiiie ettt 14-1
TYPES OF POINLEIS ..ot 14-1
Data Location Pointers (Data Object Pointers)..........ccccoeeveviieeinnenn, 14-1
INCIUAE POINTEIS. ...t e 14-1
Related Information Pointers (Description POINters)ccccceevveeee 14-2
Rules for ResolvINg POINEISccveeiiiiiiiiiee e 14-3
RECOId FOIMALS......oiiiiiiiiiie e 15-1
FIXED_LENGTH RECOIUS ...covviiiiiieeiiiiee e 15-1
STREAM RECOISeeeiiiiiiiiiii ettt 15-2
VARIABLE_LENGTH RECOIUSccoiiiiieiiiieiiiiesiiee e 15-2
UNDEFINED RECOISvveeiiiieeiiiie et 15-3
SFEDU USAQE....ciiiiiiiiie ettt e s e 16-1
The ZI SFDU Organizationcccceiiveeiiieeiiiie s 16-2
The ZKI1 SFDU Organizationccooveeiieriiiiesniee e 16-5
EXAMPIES <. 16-7
Exceptions to this Standardcccooeeiiiiii 16-8
Usage of N/A, UNK and NULL..........ccccooiiiiiiiniiee e 17-1
Interpretation of N/A, UNK, and NULLcccccoooiiiiiiiniiiieen, 17-1
NJA e ae e 17-1
UNK Lot e et e e nre e ae e 17-1
NULL ottt nae e nee e 17-1
Implementation Recommendations for N/A, UNK, and NULL............ 17-2
UNits Of MEasSUremMeNt.........coouiiiiiiie i 18-1
ST UNIES ..o 18-1

Vi

Chapter 19.
19.1
19.2
19.3
19.3.1
19.3.2
19.3.2.1
19.3.2.2
19.3.2.3
19.3.3
19.3.3.1
19.3.3.2
19.3.3.3
19.3.34
19.3.35
19.3.3.6
19.3.3.7
194
194.1
19.5
195.1
19.6
19.7

Appendix A.
Al
A2
A3
A4
A5
A.6
A7
A8
A9
A.10
All
A.12
A.13
A.l4
A.15
A.16
A.l7
A.18
A.19
A.20

Table of Contents

VVolume Organization and Naming..........cccocceeieeeiiieeniieeiiiee e 19-1
VOIUME SEE TYPES ..ttt 19-1
VVolume Organization GUIdelines...........coovveiiiiiiiiiieee e 19-7
Description of Directory Contents and Organization............c.cccccueeenee. 19-7
ROQOT Directory FileS ... 19-8
Required SUDAITECTOrIEscuveeiiiiieiiie e 19-8
CATALOG SUDAITECIONY.....ceiiiieeeiiie e 19-8
Data SUDAITECIONYcuvviiiiiie e 19-9
INDEX SUDAIFECIONY ..o 19-10
Optional SUDAITECIONIESccoviieiiiee i 19-11
CALIBration SUDAIreCOry........cceeiiieiiiiiiiiie e 19-11
DOCUMENT SUBIFECIONYceeiviieiiiieeiiiee e 19-12
EXTRAS SUDAIrECIONY ... 19-13
GAZETTER SubdireCtorycccooiieeiiieeiiie e 19-14
GEOMETRY SubdIreCtory.........ccooveeiiiieiiiieiiiie e 19-14
LABEL SUDAIFECIONY.......vveiiiiieeiiie e 19-14
SOFTWARE SUDTIFECLONYcovvveeiiiieeiiiee e 19-15
VOIUME NAMINGeoiiiiieiiie e 19-17
VOIUME ID oo e 19-17
Volume Set NaMINGcoooiiiiiii s 19-18
VOIUME SELID ..o 19-18
Logical Volume NamiNgccooveeiiiniiiie e 19-19
Exceptions to This Standard............ccceevueriiiieiiiieee e 19-19
PDS Data Object DefinitioNns..........ccoiuiriiiiiiiiie e A-1
ALILAS Lo A-3
ARRAY (Primitive Data ODJECE)........ccveiiiiiiiiiieiiee e A-4
BIT_COLUMNoiiiiiiieiteie et A-8
BIT ELEMENT (Primitive Data ODJect)ccccevviiiiieiiieeeiee e, A-11
CATALOG ...ttt nne e A-12
COLLECTION (Primitive Data ODJeCt)ccceivveriiieeiiiie e A-15
COLUMN ...ttt nneeanee e A-16
CONTAINER ..ottt A-20
DATA PRODUCERooiiiiiiiiieeiie ettt A-27
DATA _SUPPLIER ...ttt A-29
DIRECTORY wooiiiii ittt sttt aeennee s A-31
DOCUMENT ...ttt A-33
ELEMENT (Primitive Data ODJECt)ccovveriiiiieiiieeciee e A-36
FIELD .. .ottt ettt et e e ne e A-38
I oo A-41
GAZETTEER_TABLE ..ot A-45
HEADER ...ttt A-55
HISTOGRAM ...ttt A-57
HISTORY oottt enee s A-60

Table of Contents vii

A2l
A.22
A.23
A.24
A.25
A.26
A.27
A.28
A.29
A.30
A3l

Appendix B.
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27
B.28
B.29
B.30
B.31
B.32
B.33

INDEX TABLE ...ootiiiiiiiiiiiiiiiiiiitee ittt eeeees A-69
PALETTE ..o, A-74
QUBE ...ttt ettt A-T7
SERIES. ... ————————— A-85
SPECTRAL_QUBE ...t A-90
SPECTRUM ...t A-109
SPICE KERNELovviiiiiiiiiie e A-112
SPREADSHEETooviiiiii ettt A-115
TABLE ..ot A-120
TEX T A-141
VOLUME ... A-143
Complete PDS Catalog ODbject Set..........cccovviiiiiiiiiiieiiiee e, B-1
DAT A SET oo B-4
DATA_SET COLL_ASSOC _DATA_SETScooveieieeeereeeeenennns B-11
DATA_SET COLLECTION_REF_INFOccoovvviiiirieieerersen, B-12
DATA _SET COLLECTION ...ttt B-13
DATA_SET COLLECTION_INFOcooviiiirieieceeeeeeeeenees e, B-16
DATA_SET HOST ..ottt B-18
DATA _SET INFORMATION ...ttt B-19
DATA_SET _MAP_PROJECTIONc.ovoiierieesieeeeeeseee e, B-22
DATA_SET_MAP_PROJECTION_INFO......c.coovvrvrerrieeeereeeseen, B-25
DATA_SET MISSIONcoovvieiiiiieieieeeeses e, B-27
DATA _SET _REFERENCE_INFORMATIONcoooeiiiiiiiiiiiiieeeis B-28
DATA_SET TARGET ...oiiiiieeeeeeee et B-29
DS_MAP_PROJECTION_REF_INFO.......cccoceirriireeeseresseeennnns B-30
IMAGE_MAP _PROJECTION.....ccoiiiiiiiiiieeccc i B-31
INSTRUMENT ...ttt B-36
INSTRUMENT HOST ... B-41
INSTRUMENT_HOST _INFORMATIONcoooiiiiiiiieieeeciiiieee B-43
INSTRUMENT _HOST_REFERENCE_INFO.......cccoocvviieiiiiiiiien, B-44
INSTRUMENT _INFORMATION ...t B-45
INSTRUMENT _REFERENCE_INFO.....ocvviiiiiiiiiiiee e, B-48
INVENTORY .ot B-49
INVENTORY_DATA SET INFO....cccooieiiiee e B-51
INVENTORY_NODE_MEDIA INFOocovviiiiiiiiiiieee e, B-52
MISSTON ... e e B-53
MISSION _HOST ... B-59
MISSION_INFORMATION ...t B-60
MISSION_REFERENCE_INFORMATION......cccccovieiiiiiiiiiieeee e B-62
MISSION _TARGET ..ot B-63
PERSONNEL ...oviviiiiiii e B-64
PERSONNEL_ELECTRONIC _MAIL.....ccooviiiiiiiiiiiiieeeeeeeciiiiieenn B-66
PERSONNEL_INFORMATION. ...t B-67
REFERENCE........co it B-68
SOFTWARE ... B-75

viii

B.34
B.35
B.36
B.37
B.38
B.39

Appendix C.
C.l1
C.2
C.3
C4
C5
C.6
C.7
C.8
C.9
C.10
C.11
C.12

Appendix D.
D.1
D.2
D.3
D.4

Appendix E.
E.1l
E.2
E.3
E.4

Appendix F.

Appendix G.
G.1
G.2

Appendix H.
H.1
H.2
H.3
H.4

Table of Contents

SOFTWARE_INFORMATIONccoiiiiiiiieeiiie e B-77
SOFTWARE_ONLINE......cciitiiiiie et B-78
SOFTWARE_PURPOSEooiiiiiiiiiieiiie et B-79
TARGET ..ottt B-80
TARGET_INFORMATION.....coiiiiieiiiieciiee e B-82
TARGET_REFERENCE_INFORMATION......coooiiiiiieiiee e B-83
Internal Representation of Data TYPEScccoevveviiiiiiiiee i C-1
MSB_INTEGERoooiiiiiieeie et C-2
MSB_UNSIGNED _INTEGER.........cccoiiiiiiiieiiie e C-4
LSB_INTEGERoiiiiiii et C-6
LSB_UNSIGNED _INTEGER........cccceiiiiiiiieiiee e C-8
IEEE_REAL ..ottt C-10
IEEE_COMPLEX ... ottt C-13
PC REAL ..ottt et C-14
PC_COMPLEX ... ittt C-17
VAX _REAL, VAXG _REALcooiiiiiiiie et C-18
VAX_COMPLEX, VAXG_COMPLEX......cccccciiiiiiiiieeiiee e C-22
MSB_BIT_STRING......coiiiiiiiiieiieeee e C-23
LSB_BIT_STRING.......ciiiiiiiiiiie et C-25
Examples of Required Files ... D-1
AAREADME.TXT .ottt D-2
INDXINFO.TXT ittt D-8
SOFTINFO.TXT ottt D-9
VOLDESC.CAT .ottt D-13
NAIF TOOLKIT DIRECTORY STRUCTURE.ccoooiiiiieiinen, E-1
N DN L B [=To{ (0] U E-2
TOOLKIT DIFECIOIY ...ttt E-3
Using the NAIF TOOIKIL..........ccoviiiiiieieee e E-12
NAIF's File Naming Conventions..........ccoooveeiieeiiiee e E-13
A CTONYIMIS .ttt e e e e e e e e e anrnees F-1
SAVED DaAtA......cciiiiiieiiiieiiiee ettt G-1
Safekeeping Process and ProCeduUrescccvveeviiveeeeiiiieeeeeiiieee e G-1
Safekeeping Standardscooovviiiiiiiiiie e G-1
PDS Data Group Definitions..........coooviiiiiiiiiiieiiie e H-1
BAND _BIN oot H-3
BAND _SUFFIX ..ot H-4
LINE_SUFFIX ..ottt H-5

PARAMETERS ... H-6

Table of Contents iX

H.5

Appendix I.
1.1
1.2
1.3
1.4
1.5
1.6

SAMPLE_SUFFIX ..ot H-7
Data Compression FOrMALSccoeiiiiiiiien e -1
CLEM-JPEG ...ttt -3
HUFFMAN FIRST DIFFERENCEccoooiiieiee e I-4
JPEG 2000 ... et I-5
PREVIOUS PEXELottt 1-10
RUN LENGTH ..o I-11
ZIP et nes 1-12

Table of Contents

(This page intentionally left blank.)

Change Log Xi

PDS Standards Reference Change Log

Version Section Change
3.1 1.1 PDS Data Policy added
2.3 Reference coordinate standard expanded to support body-

fixed rotating, body-fixed non-rotating, and inertial
coordinate systems.

2.4 Ring coordinate standard added.

3.0 List of internal representations of data types moved to
Appendix C

3.2 EBCDIC_CHARACTER added to PDS Standard data types

523 Minimal label option described

6.3 Data set collection naming -- data processing level component

made optional

6.4 Data set naming -- added support for SPICE and Engineering,
where no instrument component applies

10.0, ALL PDS use of UNIX/POSIX forward slash separator for path
names. VMS-style bracket notation replaced.

10.2.1 Required file names for catalog objects included

125.4.2 PDS use of double quotes clarified

13.2 Use of Primitive objects described

14 New chapter -- Pointer Usage

17 New chapter -- PDS Usage of N/A, UNK, and NULL

19 Logical Volume organization added

Appendix A Primitive Objects added

Appendix A Header object -- required and optional keyword lists changed

Container object -- Column no longer a requried sub-object

Xii Change Log

Appendix B Streamlined Catalog Object Templates with examples replace
3.0 set
Appendix C New appendix containing internal representations of data

types (moved from Chapter 3)

Appendix D Outline and example for AAREADME.TXT added

Appendix E Version 3.0 Acronyms and Abbreviations modified and
moved to this Appendix. Spelling and Word Usage section
deleted.

Index The document now features an index.

ALL No other substantive changes have been made to the

standards since the release of Version 3.0. Throughout the
document, clarifications have been made, typos corrected,
some sections have been rearranged, and new examples have
been supplied.

Version Section Change
3.2 Release Date: 7/24/95
5.1.2 Label format discussion added

Noted that values in labels should be upper case (except
descriptions). Fixed examples in Appendix A.

5.2.3, Appendix A Noted that for data products using minimal labels,
DATA_OBJECT_TYPE = FILE in the Data Set Catalog
Template

6 Added target IDs for DUST and SKY

Added instrument component values SEDR and POS
Noted that Data Set and Data Set Collection IDs and Names
should be upper case. Fixed examples.

8and 19 Listed CALIB and GEOMETRY as recommended directory
names (as opposed to required).

8.2 SOFTWARE Subdirectory naming recommendation added

9.1 Volumes may contain multiple versions of VOLINFO

Change Log

9.2.1

10.1

10.2

10.2.3and 5.1

1111

11.1.2

11.1.3

14.1.2

15

151

15.3

155

17.2

18

Xiii

Increased maximum line length in text file to 78 characters
plus CR/LF

Clarified file name spcification. Noted that file name must be
upper case and that full stop character required

Added recommendation that file extension identify the data
type of afile.

Added .QUB as reserved file extension for spectral image
qubes.

Added SPICE file extensions to reserved file extension list.
catalog pointer name and file name: SWINV.CAT

Added LABINFO.TXT to list of required xxxINFO.TXT files.
Added recommended xxx INFO.TXT file names for
SOFTWARE subdirectories.

added note that detached label file (*.LBL) should have the
same base name as the associated data file

Added PDS Extended Attribute Record (XAR) policy

Added recommendation that CDs be premastered using single-
session, single-track format.

Added section on Packaging Software files on a CD-ROM
Added new example of structure pointer

Added recommendation that for VAX/VMS-compatible CDs,
fixed length and variable length files be an even number of
bytes. Removed reference to VMS restriction to an even

number of bytes in section 15.2

Removed discussion of use of BLOCK_BYTES and
BLOCKING_TYPE (since this data element not in PSDD)

Added notation that CR/LF is required line terminator for
PDS label and catalog files

Reworded first sentence.

Allow definition of numeric constants representing N/A,
UNK, and NULL to be defined for use in an INDEX table.

replaced reference to PDS V1.0 with a general statement

Xiv

19

19

19.2

19.3

19.3

19.4, Appendix A
195.1

Appendix A

Appendix A

Appendix A

Appendix A

Appendix A

Appendix A

Appendix B

Appendix B

Appendix D

Appendix D.1

Change Log

Added SOFTWARE subdirectory recommendations
Recommend that an archive volume be based on a single
version of the PDS standards. VVolume organization guidelines

added.

Clarified requirements for files & directories when logical
volumes used

INDEX table standard update

use of axx- and bxx- prefixes in required file names
clarified

fixed examples--VVolume and Volume set names capitalized
Volume set ID formation rule modified.

updated COLUMN, BIT_COLUMN, and HISTOGRAM
objects required and optional keyword lists to be consistent
with Table 3.1

Added ALIAS and INDEX_TABLE objects

Added examples of COLUMN objects having ITEMs
Clarified use of ROW_SUFFIX_BYTES and
ROW_PREFIX_BYTES for SPARE fields in Tables with

fixed length records

Clarified the requirements for VOLUME objects for Logical
volumes

Fixed examples using HEADER object to conform to current
standard. Modified description of Header object to eliminate
confusion..

Inventory, Software_Inventory and Target templates added

Removed incorrect example of use of Personnel template

INDXINFO.TXT and SOFTINFO.TXT outlines and
examples added

Modified example of AAREADME.TXT to include rules on
how pointer statements are resolved.

Change Log

Version

3.3

Appendix E and F

ALL

Change Log

Section

1.0
1.3
1.6
1.7
2.0

2.3
2.7
3.4
3.7
4.0
41
512

522
523
531
5.3.2
533
5.33.2
534
5341
5343
5.3.5

5.3.6
5.3.7

6.0
6.1

XV

Added Appendix E - NAIF Toolkit Directory Structure.
Acronyms and Abbreviations moved to Appendix F.

corrected typos, clarified text, added rationale for some
standards, updated examples to conform to latest standards

Version 3.1 change log updated--some items were missing
Change
Release Date: 6/1/99

Added DVD as new medium

Changed Version to 3.3

Updated/corrected references

Added reference to PDS web page

Added definition for IAU

Clarified text

Corrected punctuation

Fixed punctuation for references

Corrected punctuation

Corrected spelling and punctuation

Added Section headers for Primary & Secondary Objects
Corrected paragraph formatting

Added paragraph about ASCII character set

Added paragraph about Label Padding

Fixed math in calculating start byte of 8th record
Aligned keyword/values

Corrected grammar

Removed "’"in the Data Set catalog template.
Changed Version to 3.3

Modified last paragraph

Listed examples of primary and secondary objects
Changed ’bottom’ to ’following’

Removed AMMOS as an example

Removed SPACECRAFT_NAME as valid keyword
Removed SPACECRAFT_NAME as valid keyword.
Changed PDS has developed and continues to develop...
Added example for a pointer ("\DESCRIPTION)
Aligned keyword/values

Clarified statement

Changed: needed for conformance

Prioritized organizations that PDS works with
Provided definition for Data Set Collection and removed
MGN example.

XVi

6.2
6.3
6.4

7.0
7.1
721
7.3.1

7.3.2

8.1

8.2

8.3
8.4
9.0-9.33

10.0-10.1

10.2.1

10.2.2
10.2.3

10.2.4

1111
12.1
12111
12.2
12.3
12.3.1
12.3.1.2

12.3.1.3
12.3.2

123.2.1
12.3.2.3

Change Log

Corrected spelling (considerations) and punctuation
Added acronyms for data set name and identifier
Changed paragraph from future tense to past tense
Section 5 - comets

Section 6 - added acronyms to list

Section 6 - corrected spelling (ephemeris)
Section 7 - corrected spelling (gravity)

Section 8 - clarified version number rules
Updated paragraph

Clarified statements about date/time formats
Added PDS preference for convention

Corrected grammar

Reformatted paragraph

Corrected grammar

Updated paragraphs

Corrected grammar (standards directory)

Added EXTRAS directory

Added Browse and Data directory descriptions
Section 4 - Better examples of directory names
Section 5 - Reformatted paragraph

Section 8 - Corrected spelling and grammar
Changed to valid keywords

Corrected grammar (data are)

Complete rewrite of Documentation Standard
Added HTML standards

Added 1SO 9660 Level 2 description

Added ";1" to Level 1 description

Clarified required file names paragraphs

Added TARGET_CATALOG pointer to list
VOLDESC.SFD file becomes deprecated
Described detached label

Corrected grammar (its)

Added extensions and changed SPICE extensions
Corrected spelling (postscript) and grammar (data that have)
Changed chapter name

Aligned equal signs

Added reference

Reformatted paragraph

Spelling

Corrected punctuation (1.234E2)

Corrected value (16#+4B#)

Reformatted paragraph

Corrected value (1.234E3)

Updated paragraphs

Clarified date format

Clarified paragraph

Change Log

12.3.2.4
12.3.2.5
12.3.25.1
12.33.1
12.3.4
12.3.5
12.4
124.1

12.4.2
12.5.2

1253.1

1254

1254.1
1255

12.5.6

12.6
12.7
12.7.1
12.7.2
13.1
1411
14.1.2

14.2
15.0
15.2
15.3
16.0
16.2

171
17.1.2
17.2
18.0
19.1

19.3

Xvii

Changed year to 4 digits

Updated paragraph

Corrected value (1990-158T15:24:127)
Corrected value (*"'::="

Added examples

Corrected punctuation and grammar (units)
Corrected punctuation

Corrected grammar (the the)

Aligned equal signs

Aligned equal signs

Reformatted asterisks to not be superscript
Corrected value (60.15)

Corrected grammar (affect)

Reformatted paragraphs

Corrected value (10)

Added valid quoted strings

Clarified paragraph

Reformatted asterisk to not be superscript
Corrected spelling (eccentricity)

Changed to valid keyword

Corrected value (removed 1st bracket "[")
Changed to valid keyword

Reformatted paragraphs

Reformatted paragraphs

Corrected grammar (sections detail)
Corrected grammar ("is that are™)

Added required keywords to definition
Corrected grammar (occurs)

Corrected punctuation

Corrected value ("\STRUCTURE)
Changed paragraph numbering
Reformatted pointer rules

Reformatted paragraph and table
Changed paragraph numbering

Changed paragraph numbering

Corrected grammar

Clarified paragraph

Changed case of #mark#

Changed case of title (and)

Corrected punctuation (information)
Corrected case of title (and)

Corrected Sl Units (electricity potential, etc)
Updated paragraph

Corrected grammar (volume types)
Corrected grammar (up to the)

Corrected grammar (an SFDU)

Xviii

19.4.1

195

195.1

19.7

20.0 - 20.6
Appendix A

Al

A2

A3

A5

A7
A8
A.10
All

Al12

A.13
Al4

A.15

A.16

A.18
A.19

Change Log

Corrected spelling (global)

Updated Catalog and Index definitions

Added description of the EXTRAS directory

Added Preferred Method for supplying PDS catalog objects
Corrected grammar (data have been)

Changed case of value (ID)

Corrected spelling (radiometry)

Corrected value (VOLUME_SET_NAME)

Corrected value (VOLUME_SET_ID)

Reformatted paragraph

Corrected case of value (IDs)

Complete rewrite of Zip Compression

Added URL to Cold Fusion pages

Updated definition for ALIAS

Corrected spelling (subobject)

Added and changed Optional keywords

Reformatted paragraphs

Corrected spelling (the time)

Changed Optional keywords

Corrected spelling (created)

Added TARGET to Optional Objects

Clarified use of CATALOG.CAT

Formatted paragraph

Formatted paragraph

Changed Optional keywords

Updated paragraph

Changed case of keyword values to uppercase
Corrected grammar (on a)

Corrected grammar (on the medium)

Removed incorrect statements

Updated example

Changed Optional keywords

Removed a Required keyword

Added Optional keywords

Changed value to keyword (GAZETTEER_TABLE)
Corrected grammar (the breath & upper right)

Added Optional Keywords section

Added Optional Objects section

Added trailing double quote to DESCRIPTION section
Corrected paragraph to reflect proper file name
Changed value to be enclosed in double quotes

Added Required and Optional Keywords and Objects sections
Added BAND_NAME keyword

Added Optional keyword

Changed values to be keyword (CHECKSUM)
Changed values to be keyword (SCALING_FACTOR)

Change Log

A.20

A2l

A.23

A.24
A.26

A.27

A.28

A.29

Appendix B

B.1
B.2

B.3

B.4

B.5

B.6

B.7

B.8
B.10

B.11

Appendix C

XiX

Changed paragraphs

Changed case of keyword values to uppercase
Reformatted paragraphs

Removed Optional Keyword

Added Optional Objects

Corrected example (See additional example in A.27.1)
Added example for CORE_ITEM_TYPE

Corrected FILE_RECORDS to be accurate
Corrected invalid keyword (SUB_SOLAR_AZIMUTH)
Corrected grammar (data that vary)

Corrected grammar (data are)

Corrected punctuation (The Tookit)

Corrected grammar (meta-data which are)

Updated section numbers to reflect location (spares)
Repaired examples (byte lengths)

Line length to 72 chars

Added Required and Optional Objects

Repaired example

Updated Optional keyword

Changed case of keyword values to uppercase
Changed paragraph

Changed text description length to be 80 characters from 72
Added text formatting standards

Corrected punctuation

Repaired example

Reformatted paragraph

Reformatted and repaired example

Corrected spelling (DESCRIPTION)

Reformatted paragraph

Reformatted and repaired example

Corrected spelling (description & instrument)
Reformatted paragraph

Reformatted and repaired example

Corrected grammar (properties of the)

Reformatted paragraph

Reformatted and repaired example

Repaired example

Reformatted paragraph

Reformatted and repaired example

Repaired example

Corrected spelling (package)

Replaced example of SOFTWARE_INVENTORY template
Corrected grammar (target catalog)

Corrected grammar (SURFACE_GRAVITY)
Repaired example

Minor corrections throughout text

XX
C5
C.10
Appendix E
Appendix F
Appendix G
Version Section
34

Change Log

Corrected spelling (exponent-as-stored)
Corrected spelling (imaginary)
Corrected sentence (source code for)
Corrected spelling (spacit)

Corrected grammar (These data are)
Corrected punctuation

Corrected CD-WO nomenclature
Added DE (Data Engineer)

Corrected spelling (Principal)

Added SAVED Data as new section

Change

Release Date: 06/15/2001

Technical editing of the entire document (Chapters 1-20, Appendices A-G) was performed by Anne Raugh under
contract to JPL. This editing focused on correcting awkward language, making examples consistent with the text,
clarifying apparent internal inconsistencies, and in general ensuring a more readable document. Substantive changes
to the standards themselves were specifically prohibited. Document changes made by Raugh were reviewed by Lyle
Huber (ATMOS) and Ron Joyner (CN). Cases in which the intention of the original document could not be
determined by the above team were referred to Steve Hughes (CN), who acted as both historian and final arbiter.

On May 04, 2001, Ann Raugh, Richard Simpson, Lyle Huber, Steve Hughes, and Ron Joyner met at New Mexico
State University to discuss and arbitrate the final set of changes to be incorporated into this document.

Version Section

3.5

194.1
195.1
B.1.6
B.7.1

B.31

Version Section

3.6

3.1
3.2
3.8

Change
Release Date: 10/15/2002

Changed length of VOLUME_ID from 9 chars to 11 chars
Changed formation rule for VOLUME_SET _ID

Modified to include ARCHIVE_STATUS keyword
Modified to include ARCHIVE_STATUS keyword

Modified to include DATA_SET_TERSE_DESC keyword
Amended Reference section to include more definitive
language on what is appropriate to cite, what is not, and how
to cite each type of reference.

Change

Release Date: 08/01/2003

Modified to include FIELD data element
Modified to include FIELD data element
Modified to include SPREADSHEET object

Change Log

Version

3.7

4.0
5.5
55.1
5.5.2
55.3
731
7.4(6)
10.2.3
12.2.3
12.4.2

12.6
19.3.3.2

A25

Al132.1

A.l4

A.15 thru A.26
A.155

Al75

A.25

A27

A234

A245

A255

A.26.5

A.28 thru A.30
A284.1
A.285.13
B.1.6

B.7.1

B.7.5.3

B.7.5.4

Section

XXi

Modified to include SPREADSHEET as primary object
Added definition for Locally Defined Data Elements

Added Justification for Locally Defined Data Elements
Added Identification for Locally Defined Data Elements
Added Review and Use of Locally Defined Data Elements
Modified 1% two paragraphs to clarify GMT/UTC relationship
Added Note for Greenwich time

Modified list to include CSV as reserved file extension
Modified use of Colon in assignment statements (namespace)
Modified to include namespace_identifier:element_identifier

Modified to include namespace_identifier:element_identifier
Modified to include Optional use of Data Dictionary Files

Removed ‘Z’ from time value

Added Note for PARMS as alias to PARAMETERS group
Added FIELD object (sub-object of SPREADSHEET)
Renumbered sections (the old A.14 became A.15, etc)
Removed ‘Z’ from time value

Removed ‘Z’ from time value

Modified UTC / GMT for LEAPSECONDS

Added SPREADSHEET object

Removed ‘Z’ from time value

Removed ‘Z’ from time value

Removed ‘Z’ from time value

Removed ‘Z’ from time value

Renumbered sections (the old A.27 became A.28, etc)
Removed ‘Z’ from time value

Removed ‘Z’ from time value

Modified to include CITATION_DESC data element
Modified to include CITATION_DESC data element
Modified to include CITATION_DESC formation rule
Renumbered from B.7.5.3

Change

Release Date: 03/20/2006

This update of the document focused almost entirely on updates to standards in response to approved Standards
Change Requests (SCRs). A few typographical errors were also fixed.

1.7

3

4

4
5.2.1

Changed hyperlink (http://pds.jpl.nasa.gov) to regular text
format.

Corrected chapter title in header on even numbered pages by
changing "Definitions" to "Values".

Corrected chapter title in header by changing "Data Products"
to "Data Objects and Products".

Added "QUBE" to list of primary data objects.

Updated Figure 5.2 to include DD_VERSION_ID in response

xxii

522

5231
5232

531

7.3.2

8.2

8.3

10

10.1.1

10.1.2

10.2.3

12.4.5

12.7.3

13

13.2
13.2.1

20

A

A.25
A.26-A31
A.28

B.1.3

B.1.6

Change Log

to SCR 3-1021; also added LABEL_REVISION_NOTE.
Updated Figure 5.3 to include DD_VERSION_ID in response
to SCR 3-1021; also added LABEL_REVISION_NOTE and
corrected a few typographical errors ("FILE_RECORD" to
"FILE_RECORDS", "Detached" to "detached", spaces
inserted before and after "/", alignment of bullets corrected).
Changed "identifier" to "identifiers".

Changed "identifier" to "identifiers". Modified Figure 5.4 to
match format of Figures 5.2 and 5.3; added
DD_VERSION_ID in response to SCR 3-1021 and added
LABEL_REVISION_NOTE.

Added new paragraph describing DD_VERSION_ID and
added keyword to two examples in response to SCR 3-1021.
Changed point 6 to disallow alternate zones in response to
SCR 3-1023.

Modified point 2 to clarify 1ISO 9660 Level 2 usage in
response to SCR 3-1006.

Modified first paragraph from “Level 1” to “Level 2” and
“eight characters” to “31 characters” in response to SCR 3-
1006.

Deleted “only” from third paragraph in response to SCR 3-
1006.

Removed final sentence of first paragraph in response to SCR
3-1006.

Modified first paragraph from "with one exception:" to "with
the exception that" and fourth paragraph from "file name
specification™ to "file and directory name specifications" in
response to SCR 3-1006.

Updated IMQ definition to indicate exception for JPEG 2000
images, and added JP2 definition in response to SCR 3-1003.
Removed point 2 which precluded the use of GROUPs within
OBJECTSs in response to SCR 3-1037.

Fixed typographical error in point 16 (“AnEND” to “An
END”)

Modified point 14 to provide additional clarification and
reference to chapter 7 in response to SCR 3-1023.

Fixed typographical error in point 16 (“AnEND” to “An
END”)

Fixed header by adding "/ Groups" to chapter title.

Removed page break before 13.2.

Removed point 2 which precluded the use of GROUPs within
OBJECTSs in response to SCR 3-1037.

Chapter 20 (Zip Compression) is now included as section 6 of
Appendix | (Data Compression Formats), in response to SCR
3-1003.

Corrected spelling of "SHREADSHEET" in chapter contents.
Added new section describing SPECTRAL_QUBE object in
response to SCR 3-1037.

Appendices A.25 through A.30 renumbered in response to
SCR 3-1037.

Corrected spelling of section title from "SHREADSHEET" to
"SPREADSHEET".

Modified to include DATA_SET_MISSION catalog object in
response to SCR 3-1028.

Modified to include DATA_SET_MISSION catalog object in

Change Log

B.7.1

B.10

B.15

B.15.5
B.32.5.6.1

D
E

H.1

H.2

H.3

H.4
H.5

xXXiii

response to SCR 3-1028. Updated example of DATA_SET
catalog object to include ABSTRACT_DESC in response to
SCR 3-1026.

Updated DATA_SET_INFORMATION catalog object to
include required keyword ABSTRACT_DESC in response to
SCR 3-1026.

Added DATA_SET_MISSION catalog object in response to
SCR 3-1028.

Added a sentence regarding multiple instrument hosts to the
first paragraph in response to SCR 3-1024.

In the second sentence, change “A” to “An”.

Modified description of author list in REFERENCE_DESC in

response to SCR 3-1005.

Changed chapter contents from hyperlinks to plain text.
Fixed header on even-numbered pages by moving page
number to left side and chapter title to right side.

Added new section describing BAND_BIN group in response
to SCR 3-1037.

Added new section describing BAND_SUFFIX group in
response to SCR 3-1037.

Added new section describing LINE_SUFFIX group in
response to SCR 3-1037.

Renumbered from H.1 in response to SCR 3-1037.

Added new section describing SAMPLE_SUFFIX group in
response to SCR 3-1037.

Added Appendix | (Data Compression Formats) in response to
SCR 3-1003. New appendix includes former chapter 20 (Zip
Compression).

XXV Change Log

(This page intentionally left blank.)

Chapter 1. Introduction 1-1

Chapter 1. Introduction

In order for planetary science data to be useful to those not directly involved in its creation, sup-
porting information must be made available with the data to allow effective use and
interpretation. The exchange of data is increasingly important in planetary science; thus there is a
need for establishment and enforcement of standards regarding the quality and completeness of
data. Electronic communication has become more sophisticated, and the use of new media (such
as CD-ROMs and DVD) for data storage and transfer requires additional formatting standards to
ensure long-term readability and usability. To these ends, the Planetary Data System (PDS) has
developed a data set nomenclature consistent across discipline boundaries, as well as standards
for labeling data files.

1.1 PDS Data Policy

Only data that comply with PDS standards will be published in volumes labeled “Conforms to
PDS Standards”. When the PDS assists in the preparation of data published in a non-compliant
format, PDS participation should be acknowledged with the statement such as “funded by PDS”.
The PDS Management Council makes decisions on compliance waivers. Non-compliant data
sets will be incorporated into the PDS archives only under unusual circumstances.

1.2 Purpose

This document is intended as a reference manual for use in conjunction with the PDS Data
Preparation Workbook and the Planetary Science Data Dictionary. The PDS Data Preparation
Workbook describes the end-to-end process for submitting data to the PDS and gives instructions
for preparing data sets. In addition, a glossary of terms used throughout the documentation is
included as an appendix to the Workbook. The Planetary Science Data Dictionary (PSDD)
contains definitions of the standard data element names and objects. This Standards Reference
defines all PDS standards for data preparation.

1.3 Scope

The information included here constitutes Version 3.4 of the Planetary Data System data
preparation standards for producing archive quality data sets.

1.4 Audience

This document is intended primarily to serve the community of scientists and engineers
responsible for preparing planetary science data sets for submission to the PDS. These include
restored data from the era prior to PDS, mission data from active and future planetary missions,
and data from earth-based sites. The audience includes personnel at PDS discipline and data
nodes, mission principal investigators, and ground data system engineers.

1-2 Chapter 1. Introduction

1.5 Document Organization

The first chapter of this document, “Chapter 1 — Introduction”, provides introductory material
and citations of other reference documents. The remaining chapters provide an encyclopedia of
data preparation standards, organized alphabetically by standard title.

1.6 Other Reference Documents
The following references are cited in this document:

* Batson, R. M., (1987) “Digital Cartography of the Planets: its Status and Future”, Photo-
grammetric Engineering & Remote Sensing 53, 1211-1218.

* Davies, M.E., et al. (1991) “Report of the IAU/IAG/COSPAR Working Group on Carto-
graphic Coordinates and Rotational Elements of the Planets and Satellites: 1991”,
Celestial Mechanics, 53,377-397.

* Greeley, R. and Batson, R.M. (1990) Planetary Mapping, Cambridge University Press,
Cambridge, 296p.

* Guide on Data Entity Naming Conventions, NBS Special Publication 500-149.

* Planetary Science Data Dictionary, JPL D-7116 Rev D, July 15, 1996, (Available from
the PDS).

* Planetary Data System Data Preparation Workbook Version 3.1, JPL D-7669 Part 1, Feb-
ruary 17, 1995, (Available from the PDS)

* Issues and Recommendations Associated with Distributed Computation and Data
Management Systems for the Space Sciences, National Academy Press, Washington, DC,
111p.

International Standards Organization (ISO) References:

* |SO 9660:1988 “Information Processing - Volume and File Structure of CD-ROM for
Information Exchange”, April 15, 1988.

¢ |SO 646:1991 ASCII character set.

* ISO 8601:1988 “Data Element and Interchange Formats — Representations of Dates and
Times”

SFDU and PVL References:

¢ Standard Formatted Data Units - Structure and Construction Rules, CCSDS 620.0-R-
1.1c, May 1992.

Chapter 1. Introduction 1-3

» Standard Formatted Data Units - A Tutorial; CCSDS 620.0-G-1, May 1992,
* Parameter Value Language Specification (ccsd0006); CCSD 641.0-R-0.2, June 1991.
* Parameter Value Language -- A Tutorial; CCSDS 641.0-G-1.0, May 1992.

1.7 Online Document Availability

The Planetary Science Data Dictionary, Planetary Data System Data Preparation Workbook,
and this document, the Planetary Data System Standards Reference, are available online.
Information on accessing these references may be found on the PDS website at the following
URL:

http://pds.jpl.nasa.gov

To obtain a copy of these documents or for questions concerning these documents, contact the
PDS Operator (at PDS_OPERATOR@)jpl.nasa.gov, 626-744-5579) or a PDS data engineer.

The examples provided throughout the chapters and appendices are based on both existing and
planned PDS archive products, modified to reflect the current version of the PDS Standards.
Data object definitions are refined and augmented from time to time, as user community needs
arise, so object definitions from products designed under older versions of the Standards may
differ significantly. To check the current state of any object definition, consult a PDS data
engineer or this URL.:

http://pdsproto.jpl.nasa.gov/ddcolstdval/newdd/top.cfm

Additional examples may be obtained by contacting a Data Engineer.

1-4

(This page intentionally left blank.)

Chapter 1. Introduction

Chapter 2. Cartographic Standards 2-1

Chapter 2. Cartographic Standards

The following cartographic data standards were developed through an iterative process involving
both the NASA Planetary Cartography Working Group (PCWG) and the PDS. Members of the
PCWG also serve on the key International Astronomical Union (IAU) committee that formulates
these standards for international adoption. It is the intention of the PDS to keep its own
cartographic standards in line with those of the PCWG, and in turn the IAU.

The cartographic standards used in any particular data set should be identified and, where
helpful, documented on the archive volume.

2.1 Inertial Reference Frame, Time Tags and Units

The Earth Mean Equator and Equinox of Julian Date 2451545.0 (referred to as the J2000 system)
is the standard inertial reference frame. The Earth Mean Equator and Equinox of Besselian 1950
(JD 2433282.5) is also supported because of the wealth of previous mission data referenced to
this system. (The transformation between the two systems is well defined.)

The standard format for time tags is UTC in year, month, day, hour, minute and decimal seconds,
although Julian dates are also supported.

The standard units are SI metric units, including decimal degrees.

2.2 Spin Axes and Prime Meridians

The 1AU-defined spin axes and prime meridians defined relative to the J2000 inertial reference
system are the standard for planets, satellites and asteroids where these parameters are defined.
For other planetary bodies, definitions of spin axis and prime meridian determined in the future
should have the body-fixed axis aligned with the principal moment of inertia, with the North
Pole defined as lying along the spin axis and above the Invariable Plane. Where insufficient
observations exist for a particular body to determine the principal moment of inertia, coordinates
of a surface feature will be specified and these used to define the prime meridian. Note that some
small, irregular bodies may have chaotic rotations and will thus need to be handled on a case-by-
case basis.

2.3 Reference Coordinates

There are three basic types of coordinate systems: body-fixed rotating; body-fixed non-rotating;
and inertial. A body-fixed coordinate system is one associated with the body (e.g., a planet or
satellite). The body-fixed system is centered on the body and rotates with the body (unless it is a
non-rotating type), whereas an inertial coordinate system is fixed at some point in space.

To support the descriptions of these various reference coordinate systems, the PDS has defined
the following set of data elements (See the Planetary Science Data Dictionary for complete
definitions.):

2-2 Chapter 2. Cartographic Standards

COORDINATE_SYSTEM_TYPE
COORDINATE_SYSTEM_NAME
LATITUDE

LONGITUDE
EASTERNMOST_LONGITUDE
WESTERNMOST_LONGITUDE
MINIMUM_LATITUDE
MAXIMUM_LATITUDE
POSITIVE_LONGITUDE_DIRECTION

Currently, the PDS has specifically defined two types of body-fixed rotating coordinate systems:
planetocentric and planetographic. However, the set of related data elements are modeled such
that definitions for other body-fixed rotating coordinate systems, body-fixed non-rotating and
inertial coordinate systems can be added as the need arises. Contact a PDS data engineer for
assistance in defining a specific coordinate system.

The definition of planetographic longitude is dependent upon the rotation direction of the body,
with longitude defined as increasing in the direction opposite to the rotation. That is to say, the
longitude increases to the west if the rotation is prograde (or eastward) and vice versa. Table 2.1
lists the rotation direction (prograde or retrograde) of the primary planetary bodies and the
Earth’s Moon. It also indicates the valid longitude range for each body. In order to
accommodate different traditions in measuring longitude, the Planetary Science Data Dictionary
defines a broad longitude range: (-180, 360). Table 2.1 indicates which part of that range is
applicable to which body.

Table 2.1: Primary Bodies and Earth’s Moon: Rotation Direction and Longitude Range

Planet Rotation Direction Longitude Range
Earth Prograde (0, 360)
(-180, 180)*
Mars Prograde (0, 360)
Mercury Prograde (0, 360)
Moon Prograde (0, 360)
(-180, 180)*
Jupiter Prograde (0, 360)
Neptune Prograde (0, 360)
Pluto Retrograde (0, 360)
Saturn Prograde (0, 360)
Sun Prograde (0, 360)
(-180, 180)*
Uranus Retrograde (0, 360)
Venus Retrograde (0, 360)

* The rotations of the Earth, Moon and Sun are prograde, however it has been traditional to
measure longitudes for these bodies as increasing to the east instead of the west. The PDS
recommends that the planetographic longitude standard be followed, but also supports the

Chapter 2. Cartographic Standards 2-3

traditional method. Specifically, the longitude range of (-180, 180) is supported for the Earth,
Moon and Sun

2.3.1 Body-Fixed Rotating Coordinate Systems

2.3.1.1 Planetocentric

The planetocentric system has an origin at the center of mass of the body. Planetocentric latitude
is the angle between the equatorial plane and a vector connecting the point of interest and the
origin of the coordinate system. Latitudes are defined as positive in the northern hemisphere of
the body, where north is in the direction of Earth’s angular momentum vector, i.e., pointing
toward the hemisphere north of the solar system invariant plane. Longitudes increase toward the
east, making the planetocentric system right-handed.

2.3.1.2 Planetographic

The planetographic system has an origin at the center of mass of the body. The planetographic
latitude is the angle between the equatorial plane and a vector through the point of interest,
where the vector is normal to a biaxial ellipsoid reference surface. Planetographic longitude is
defined as increasing with time to an observer fixed in space above the object of interest. Thus,
for prograde rotators (rotating counter clockwise as seen from a fixed observer located in the
hemisphere to the north of the solar system invariant plane), planetographic longitude increases
toward the west. For a retrograde rotator, planetographic longitude increases toward the east.

2.4 Rings

Locations in planetary ring systems are specified in polar coordinates by a radius distance
(measured from the center of the planet) and a longitude. Longitudes increase in the direction of
orbital motion, so the ring pole points in the direction of right-handed rotation. Note that this
corresponds to the IAU-defined North Pole for Jupiter, Saturn and Neptune, but the South Pole
for Uranus.

Longitudes are given relative to the ascending node of the ring plane on the Earth’s mean equator
of J2000. However, the Earth’s mean equator of B1950 is also supported as a reference longitude
because of the wealth of data already reduced using this coordinate frame. The difference is
generally a small, constant offset to the longitude. All longitude values fall between 0 and 360
degrees.

Note that ring coordinates are always given in an inertial frame, as it is impossible to define a
suitable rotating coordinate frame for a ring system where features rotate at different rates. When
it is necessary to specify the location of a moving body or feature, the rotation rate and epoch
must be specified in addition to the longitude.

To support the description of locations in a planetary ring system, the PDS has defined the
following elements:

2-4 Chapter 2. Cartographic Standards

RING_RADIUS
MINIMUM_RING_RADIUS
MAXIMUM_RING_RADIUS

RING_LONGITUDE
MINIMUM_RING_LONGITUDE
MAXIMUM_RING_LONGITUDE

B1950_RING_LONGITUDE
MINIMUM_B1950_RING_LONGITUDE
MAXIMUM_B1950_RING_LONGITUDE

RING_EVENT_TIME
RING_EVENT START_TIME
RING_EVENT STOP_TIME

RADIAL_RESOLUTION
MINIMUM_RADIAL_RESOLUTION
MAXIMUM_RADIAL_RESOLUTION

The radius and longitude elements define an inertial location in the rings, and the ring event time
elements define the time at the ring plane to which an observation refers. If desired, the radial
resolution elements can be used to specify the radial dimensions of ring features that can be
resolved in the data. See the Planetary Science Data Dictionary (PSDD) for complete definitions
of these elements.

In general, the above elements refer to locations in an equatorial ring. However, under certain
circumstances it is necessary to define these values for an inclined ring, in which case the
interpretations are slightly more complicated. Here longitudes are measured as a “broken angle”
along the planet’s equatorial plane to the ascending node of the ring plane, and thence along the
ring plane. In these circumstances, it is also necessary to define the orbital elements of the ring in
question via the following elements in the PSDD:

RING_INCLINATION
RING_ASCENDING_NODE_LONGITUDE
NODAL_REGRESSION_RATE
POLE_RIGHT_ASCENSION
POLE_DECLINATION
COORDINATE_SYSTEM_ID

The ascending node longitude refers to the moment defined by the RING_EVENT_TIME. The
ring inclination is given relative to the planet’s equator, as specified by the spin pole’s right
ascension and declination. The COORDINATE_SYSTEM_ID can be either “J2000” or
“B1950”, with “J2000 serving as the default. See the PSDD for further details.

Chapter 2. Cartographic Standards 2-5

2.5 Reference Surface

Two standard reference surface models are supported: the digital terrain model (DTM) and the
digital image model (DIM). Note, however, that Mars is an exception for which planetographic
latitude is used.

The digital terrain model defines body radius as a function of cartographic latitude and longitude
in a sinusoidal equal-area projection. Spheroids, ellipsoids and harmonic expansions giving
analytic expressions for radius as a function of cartographic coordinates are all supported.

The digital image model (DIM) defines body brightness in a specified spectral band or bands as a
function of cartographic latitude and longitude in a sinusoidal equal-area projection, and
associated with the surface radius values in the corresponding DTM. DIMs registered to
spheroids, ellipsoids and harmonic expansions are supported.

2.6 Map Resolution

The suggested spatial resolution for a map is 1/2" degrees. The suggested vertical resolution is 1
x 10™ meters, with m and n chosen to preserve all the resolution inherent in the data.

2.7 References
The following references provide more detail on the cartographic data standards:
Davies, M. E., et al (1991) “Report of the IAU/IAG/COSPAR Working Group on Cartographic

Coordinates and Rotational Elements of the Planets and Satellites: 1991,” Celestial Mechanics,
53, 377-397.

Batson, R.M., (1987) “Digital Cartography of the Planets: New Methods, its Status and Future”,
Photogrammetric Engineering & Remote Sensing, 53, 1211-1218.

Greeley, R. and Batson, R.M. (1990) Planetary Mapping, Cambridge University Press,
Cambridge, 296p.

(This page intentionally left blank.)

Chapter 2. Cartographic Standards

Chapter 3. DATA_TYPE Values and Data File Storage Formats 3-1

Chapter 3. DATA_TYPE Values and Data
File Storage Formats

Each PDS archived product is described using label objects that provide information about the
data types of stored values. The data elements DATA_TYPE, BIT_DATA_TYPE, and
SAMPLE_TYPE appear together with related elements defining starting location and length for
each field. In PDS data object definitions the byte, bit, and record positions are counted from left
to right, or first to last encountered, and always begin with 1.

Data files may be in ASCII or binary format. ASCII format is often more easily transferred
between hardware systems or even application programs on the same computer.
Notwithstanding, numeric data are often stored in binary files when the ASCII representation
would require substantially more storage space. (For example, each 8-bit signed pixel value in a
binary image file would require a four-byte field if stored as an ASCII table.)

3.1 Data Elements

Table 3.1 identifies by object the data elements providing type, location, and length information.
The elements ITEMS and ITEM_BYTES are used to subdivide a single COLUMN, FIELD,
BIT_COLUMN, or HISTOGRAM into a regular vector containing as many elements as
specified for the value of ITEMS. In these objects the DATA_TYPE must indicate the type of a
single item in the vector. In the past, the data element ITEM_TYPE was used for this purpose,
but DATA_TYPE is now the preferred parameter.

3.2 Data Types

Table 3.2 identifies the valid values for the DATA _TYPE, BIT_DATA_TYPE, and
SAMPLE_TYPE data elements used in PDS data object definitions. The values for these
elements must be one of the standard values listed in the Planetary Science Data Dictionary
(PSDD). Please note:

* Inall cases, these standard values refer to the physical storage format of the data in
the data file.

* In some cases, obsolete values from previous versions of the PDS Standards have
been retained as aliases for more specific values (the type “INTEGER”, for example,
is interpreted as “MSB_INTEGER” when it is encountered). In these cases the more
specific value should always be used in new data sets — the obsolete value is retained
only for backward compatibility. Obsolete values are indicated in the table.

» Aliases have been supplied for some of the generic data types that indicate the kind of
system on which the data originated. For example, “MAC_REAL” is an alias for
“|IEEE_REAL”, but “VAX_REAL” has no alias, as the VAX binary storage format is
unique to VAX systems. In general, the more generic term is preferred, but the
system-specific version may be used if needed.

Chapter 3. DATA_TYPE Values and Data File Storage Formats

Table 3.1: Type Elements Used in Data Label Objects

Data Object

COLUMN
(without ITEMS)

COLUMN
(with ITEMS)

BIT_COLUMN
(without ITEMS)

BIT_COLUMN
(with ITEMS)

FIELD
(no items)

FIELD
(with items)

IMAGE

HISTOGRAM

Data Elements

DATA_TYPE
START_BYTE
BYTES

DATA_TYPE
START_BYTE
BYTES (optional)
ITEMS
ITEM_BYTES

BIT_DATA_TYPE
START_BIT
BITS

START_BIT
BITS (optional)
ITEMS
ITEM_BITS

DATA_TYPE
FIELD_NUMBER
BYTES

DATA_TYPE
FIELD_NUMBER
BYTES

ITEMS
ITEM_BYTES

SAMPLE_TYPE
SAMPLE_BITS

DATA_TYPE
BYTES (optional)
ITEMS
ITEM_BYTES

Notes

alias for ITEM_TYPE

total bytes in COLUMN

bytes in each ITEM

total bits in BIT_COLUMN

bits in each ITEM

if populated

maximum FIELD bytes

if populated

maximum bytes in FIELD

maximum item bytes

alias for ITEM_TYPE

total bytes in HISTOGRAM
number of bins in HISTOGRAM
bytes in each ITEM

Chapter 3. DATA_TYPE Values and Data File Storage Formats 3-3

Table 3.2: Standard PDS Data Types

Data Element Usage Codes:

D = DATA_TYPE
B = BIT_DATA_TYPE
S = SAMPLE_TYPE
Usage Value Description
D ASCII_REAL ASCII character string representing a real number; see
Section 5.4 for formatting rules
D ASCII_INTEGER ASCII character string representing an integer; see
Section 5.4 for formatting rules
D ASCII_COMPLEX ASCII character string representing a complex number;
see Section 5.4 for formatting rules
Obsolete BIT_STRING alias for MSB_BIT_STRING
D,B BOOLEAN True/False Indicator: a 1-, 2- or 4-byte integer or 1-32 bit
number. All 0 = False; anything else = True.
D CHARACTER ASCII character string; see Section 5.4 for formatting
rules
Obsolete COMPLEX alias for IEEE_ COMPLEX
D DATE ASCII character string representing a date in PDS
standard format; see Section 5.4 for formatting rules
D EBCDIC_CHARACTER EBCDIC character string
Obsolete FLOAT alias for IEEE_REAL
D IBM_COMPLEX IBM 360/370 mainframe complex number (8- or 16-
byte)
D,S IBM_INTEGER IBM 360/370 mainframe 1-, 2-, and 4-byte signed
integers
D,S IBM_REAL IBM 360/370 mainframe real number (4- or 8-byte)
D,B,S IBM_UNSIGNED_INTEGER IBM 360/370 mainframe 1-, 2-, and 4-byte unsigned
integers
D IEEE_COMPLEX 8-, 16-, and 20-byte complex numbers
D,S IEEE_REAL 4-, 8- and 10-byte real numbers
Obsolete INTEGER alias for MSB_INTEGER
D LSB_BIT_STRING 1-, 2-, and 4-byte bit strings
D,S LSB_INTEGER 1-, 2-, and 4-byte signed integers
D,B, S LSB_UNSIGNED_INTEGER 1-, 2-, and 4-byte unsigned integers
D MAC_COMPLEX alias for IEEE_COMPLEX
D,S MAC_INTEGER alias for MSB_INTEGER
D,S MAC_REAL alias for IEEE_REAL
D,B,S MAC_UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER
D MSB_BIT_STRING 1-, 2-, and 4-byte bit strings
D,S MSB_INTEGER 1-, 2-, and 4-byte signed integers
D,B,S MSB_UNSIGNED_INTEGER 1-, 2-, and 4-byte unsigned integers
D,B N/A Used only for spare (or unused) fields included in the

data file.

3-4 Chapter 3. DATA_TYPE Values and Data File Storage Formats
D PC_COMPLEX 8-, 16-, and 20-byte complex numbers in IBM/PC format
D,S PC_INTEGER alias for LSB_INTEGER
D,S PC_REAL 4-, 8-, and 10-byte real numbers in IBM/PC format
D,B,S PC_UNSIGNED_INTEGER alias for LSB_UNSIGNED_INTEGER
Obsolete REAL alias for IEEE_REAL
D SUN_COMPLEX alias for IEEE_COMPLEX
D,S SUN_INTEGER alias for MSB_INTEGER
D,S SUN_REAL alias for IEEE_REAL
D,B,S SUN_UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER
D TIME ASCII character string representing a date/time in PDS
standard format; see Section 5.4 for formatting rules

Obsolete UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER

D VAX_BIT_STRING alias for LSB_BIT_STRING

D VAX_COMPLEX Vax F-, D-, and H-type (8-, 16- and 32-byte,
respectively) complex numbers

D,S VAX_DOUBLE alias for VAX_REAL

D,S VAX_INTEGER alias for LSB_INTEGER

D,S VAX_REAL Vax F-, D-, and H-type (4-, 8- and 16-byte, respectively)
real numbers

D,B,S VAX_UNSIGNED_INTEGER alias for LSB_UNSIGNED_INTEGER

D VAXG_COMPLEX Vax G-type (16-byte) complex numbers

D,S VAXG_REAL Vax G-type (8-byte) real numbers

3.3 Binary Integers

There are two widely used formats for integer representations in 16-bit and 32-bit binary fields:
most significant byte first (MSB) and least significant byte first (LSB) architectures. The MSB
architectures include IBM mainframes, many UNIX systems such as SUN, and Macintosh
computers. The LSB architectures include VAX systems and IBM PCs. In the original PDS
system the default format was MSB, thus the designation of “INTEGER” and
“UNSIGNED_INTEGER?” as aliases of “MSB_INTEGER” and “MSB_UNSIGNED _IN-
TEGER”. New data sets should be prepared using the appropriate specific designation from
Table 3.2, above.

3.4 Signed vs. Unsigned Integers

The “ INTEGER?” data types refer to signed, 2’s complement integers. Use the corresponding
“ UNSIGNED_INTEGER?” type for unsigned integer and bit string fields.

Chapter 3. DATA_TYPE Values and Data File Storage Formats 3-5

3.5 Floating Point Formats

The PDS default representation for floating point numbers is the ANSI/IEEE standard. This
representation is defined as the IEEE_REAL data type, with aliases identified in Table 3.2.
Several additional specific floating-point representations supported by PDS are described in
Appendix C.

3.6 Bit String Data

The BIT_STRING data types are used in definitions of table columns holding individual bit field
values. A BIT_COLUMN object defines each bit field. BIT_STRING data types can be 1-, 2-, or
4-byte fields, much like a binary integer. Extraction of specific bit fields within a 2- or 4-byte
BIT_STRING is dependent on the host architecture (MSB or LSB). In interpreting bit fields
(BIT_COLUMNYS) within a BIT_STRING, any necessary conversions such as byte swapping
from LSB to MSB are done first, then bit field values (START_BIT, BITS) are used to extract
the appropriate bits. This procedure ensures that bit fields are not fragmented due to differences
in hardware architectures.

3.7 Character Data
Specification of character field format in ASCII and binary files pending.

3.8 Format Specifications
Data format specifications provided in the FORMAT element serve two purposes:

1. Inan ASCII TABLE data file or SPREADSHEET file, they provide a format which
can be used in scanning the ASCII record for individual fields; and

2. Inabinary data file, they provide a format that can be used to display the
data values.

A subset of the FORTRAN data format specifiers is used for the values of FORMAT elements.
Valid specifiers include:

Aw Character data value

Iw Integer value

Fw.d Floating point value, displayed in decimal format
Ew.d[Ee] Floating point value, displayed in exponential format

Where:

w is the total number of positions in the output field (including sign, decimal point, and
exponentiation character — usually “E” — if any);

d isthe number of positions to the right of the decimal point;

e isthe number of positions in exponent length field.

3-6 Chapter 3. DATA_TYPE Values and Data File Storage Formats

3.9 Internal Representations of Data Types
Appendix C contains the detailed internal representations of the PDS standard data types listed in
Table 3.2.

The PDS has developed tools designed to use the specifications contained in Appendix C for
interpreting data values for display and validation.

Chapter 4. Data Objects and Products 4-1

Chapter 4. Data Objects and Products

At its simplest, a data product consists of a PDS label and the data object that it describes. More
complex data products may contain several mutually dependent data objects, a primary object
and one or more secondary objects, or both. In all cases, a single label is used to describe all
parts of the product (even if they are held in separate physical files). A single PRODUCT _ID
value is defined for the entire set in that PDS label.

A data product is one component of a data set (see the Data Set/Data Set Collection Contents
and Naming chapter of this document).

Primary Data Object
A primary data object is a set of results from a scientific observation. Primary data objects are
usually described using one of these PDS object structures:

TABLE
SPREADSHEET
IMAGE
SERIES
SPECTRUM
QUBE

Secondary Data Object

A secondary data object is any data used for processing or interpreting the primary data object(s),
for example, a histogram derived from an image. Secondary data objects are usually described
using one of these PDS object structures:

HISTOGRAM
PALETTE
HEADER

The PDS data product label, written in Object Description Language (ODL) (see the Object
Description Language (ODL) Specification and Usage chapter of this document), defines both
the physical and logical structure of the constituent data object(s).

4-2 Chapter 4. Data Objects and Products

4.1 Data Product File Configurations

The PDS label and data object may be in the same file or separate files. For data products with
more than one object, the data objects may be in one or more files. In all cases, however, there
must be exactly one PDS label containing exactly one PRODUCT _ID value. The PRODUCT _ID
value must be unique within the data set containing this data product.

Example

Consider a data product that consists of a 3-color image in which each color plane is stored in a separate physical
file (that is, one file each for red, blue and green). Since all three colors are required to get the full image, this
product contains three mutually dependent primary objects.

The label for this data product will contain a single PRODUCT_ID, three pointers to the separate data files, and
three IMAGE object definitions. To aid in distinguishing between data files, the data preparer may also choose to
include an IMAGE_ID keyword in each IMAGE object definition. The resulting PDS label would contain the
following lines:

PRODUCT_ID "22A190"

"22A190R.IMG"
"22A190G.IMG"
"22A190B.IMG"

“"RED_IMAGE
“GREEN_IMAGE
"BLUE_IMAGE

OBJECT

= RED_IMAGE
IMAGE_1ID = "22A190-RED"
END_OBJECT = RED_IMAGE
OBJECT = GREEN_IMAGE
IMAGE_1ID = "22A190-GREEN"
END_OBJECT = GREEN_IMAGE
OBJECT = BLUE_IMAGE
IMAGE_ID = "22A190-BLUE"
END_OBJECT = BLUE_IMAGE

Figure 4.1 illustrates file configurations for a data product with a single data object.

Chapter 4. Data Objects and Products

@ Attached Label

PRODUCT_ID = A PDS Label
Primary Data Object

file A

@ Detached Label
file A

PRODUCT_ID=A PDS Label

file B

Primary Data Object

Figure 4.1 Data Product with a Single Data Object

Figure 4.2 shows the possible file configurations for a single data product consisting of one
primary and one secondary data object. Similar examples could be made using data products
composed of more than two data objects.

Attached Label
PRODUCT_ID=A

Chapter 4. Data Objects and Products

file A

PDS Label
Primary Data Object
Secondary Data Object

Attached Label

file A

PRODUCT_ID = A

PRODUCT_ID =B

PDS Label
Primary Data Object

file B

PDS Label
Secondary Data Object

Detached Label

file A

PDS Label

PRODUCT_ID = A

file B

Primary Data Object
Secondary Data Object

Detached Label
PRODUCT_ID=A

file A

PDS Label

file B

Primary Data Object

file C

PDS Label

PRODUCT_ID =B

file D

Secondary Data Object

N2 N2 U BN

Combined Detached Label
PRODUCT_ID=A

file A

PDS Label

file B

Primary Data Object

file C

Secondary Data Object

Figure 4-2. Data Product with Multiple Data Objects

Chapter 5. Data Product Labels 5-1

Chapter 5. Data Product Labels

PDS data product labels are required for describing the contents and format of each individual
data product within a data set. PDS data product labels are written in the Object Description
Language (ODL). The PDS has chosen to label the wide variety of data products under archival
preparation by implementing a standard set of data object definitions, group definitions, data
elements, and standard values for the elements. These data object definitions, data elements, and
standard values are defined in the Planetary Science Data Dictionary (PSDD). Appendix A of
this document provides general descriptions and examples of the use of these data object
definitions and data elements for labeling data products.

5.1 Format of PDS Labels

5.1.1 Labeling methods

In order to identify and describe the organization, content, and format of each data product, PDS
requires a distinct data product label for each individual data product file. These distinct product
labels may be constructed in one of three ways:

Attached - The PDS data product label is attached at the beginning of the data product file. There
is one label attached to each data product file.

Detached - The PDS data product label is detached from the data and resides in a separate file
which contains a pointer to the data product file. There is one detached label file for every data
product file. The label file should have the same base name as its associated data file, but the
extension .LBL .

Combined Detached - A single PDS detached data product label file is used to describe the
contents of more than one data product file. The combined detached label contains pointers to
individual data products.

NOTE: Although all three labeling methods are equally acceptable, the PDS tools do not
currently support the Combined Detached label option.

Figure 5.1 illustrates the use of each of these methods for labeling individual data product files.

5.1.2 Label format

PDS recommends that labels have stream record format, and line lengths of at most 80 characters
(including the CR/LF line terminators) so that the entire label can be seen on a computer screen
without horizontal scrolling. The carriage return and line feed (CR/LF) pair is the required line
terminator for all PDS labels. (See the Record Formats chapter of this document.)

5-2

File A
PDS
LABEL
DATA
File A
PDS
LABEL
\\\\\\x File B
DATA
File A
PDS LABEL \\\\\‘ File B
DATA
File G
DATA

Chapter 5. Data Product Labels

Attached Label

Detached Label

Combined
Detached Label

Figure 5.1 Attached, Detached, and Combined Detached PDS Labels

Chapter 5. Data Product Labels 5-3

All values in a PDS label should be in upper case, except values for descriptive elements
(DESCRIPTION, NOTE, etc.). It is also recommended that the equal signs in the labels be
aligned for ease of reading.

ASCII Character Set

All values in a PDS label must conform to the standard 7-bit ASCII character set. Labels may
include characters in the range of ASCII characters 32 through 127 (decimal), and the record
delimiters Line Feed (10 decimal) and Carriage Return (13 decimal).

The remaining 7-bit ASCII characters (1-9, 11, 12, and 14-31 decimal, which includes the
horizontal and vertical tab and form feed characters) are not permitted in PDS labels. Note that
the 8-bit characters 128 through 255 (decimal) are not used in the PDS as the interpretation of
these characters varies by operating system, computer platform, and font selected. Specifically,
extended-set characters with diacritical marks are not to be used as they are interpreted
differently by different applications.

Label Padding
When a fixed length data file has an attached label, the label is padded with space characters
(ASCII 32 decimal) in one of the following ways:

1) Spaces are added after the label’s END <CR><LF> statement and before the data so that the
total of the label (in bytes) is an integral multiple of the record length of the data. In this case,
LABEL_RECORDS is calculated by dividing the total padded length of the label section, in
bytes, by the stated value of RECORD_BYTES.

Example

In the example below, the label portion of the file is 7 x 324 = 2268 bytes in length, including blank fill between the
END<CR><LF> statement and the first byte of data. The actual data portion of the file starts at record 8 (i.e., the 1st
byte of the 8th record starts at byte (7 x 324)+1 = 2269)

RECORD_TYPE FIXED_ LENGTH<CR><LF>

RECORD_BYTES = 324<CR><LF>
FILE_RECORDS = 334<CR><LF>
LABEL_RECORDS = 7<CR><LF>
~IMAGE = 8<CR><LF>
END<CR><LF>

....blank fill....

data

2) Each line in the label may be padded with space characters so that each line in the label has
the same record length as the data file. In this case, the label line length may exceed the
recommended 80 characters; LABEL_RECORDS is the number of physical records in the label
section of the file.

5-4 Chapter 5. Data Product Labels

Example

In the example below, the label portion of the file is 80 x 85 = 6800 bytes in length. Each line in the label portion of
the file is 85 bytes long, the same length as each data record. Notice the blank space between the actual values in the
label and the line delimiters. In the example, the label is 80 lines long (i.e., 80 records long) and the data begin at
record 81. Note that the label is padded so that <CR><LF> are in bytes 84 and 85.

RECORD_TYPE = FIXED_ LENGTH <CR><LF>
RECORD_BYTES = 85 <CR><LF>
FILE_RECORDS = 300 <CR><LF>
LABEL_RECORDS = 80 <CR><LF>
“TABLE = 81 <CR><LF>
END <CR><LF>
Data

5.2 Data Product Label Content

5.2.1 Attached and Detached Labels

PDS data product labels have a general structure that is used for all attached and detached labels,
except for data products described by minimal labels. (Minimal labels are described in Section
5.2.3)

e LABEL STANDARDS identifier

* FILE CHARACTERISTIC data elements
* DATA OBJECT pointers

e |DENTIFICATION data elements

e DESCRIPTIVE data elements

e DATA OBJECT DEFINITIONS

* END statement

Figure 5.2 provides an example of how this general structure appears in an attached or detached
label for a data product file containing multiple data objects.

5.2.2 Combined Detached Labels

For the Combined Detached label option, the general label structure is modified slightly to
reference each individual file within its own FILE object explicitly. In addition, identification
and descriptive data elements that apply to all of the files can be located before the FILE objects.

Chapter 5. Data Product Labels

PDS LABEL

PDS_VERSION_ID
DD_VERSION_ID
LABEL_REVISION_NOTE

/* FILE_CHARACTERISTICS */
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

/* POINTERS TO DATA OBJECTS */
NMAGE
AHISTOGRAM

/* IDENTIFICATION DATA ELEMENTS */
DATA_SET_ID
PRODUCT_ID
SPACECRAFT_NAME
INSTRUMENT_NAME
TARGET_NAME
START_TIME
STOP_TIME

PRdDUCT_CREATION_TIME

/* DESCRIPTIVE DATA ELEMENTS */
FILTER_NAME =
OFFSET_MODE_ID e

/* DATA OBJECT DEFINITIONS */

OBJECT - IMAGE
END._OBJECT = IMAGE
OBJECT — HISTOGRAM
END_OBJECT — HISTOGRAM
END

* LABEL STANDARDS
IDENTIFIERS

* FILE CHARACTERISTICS
DATA ELEMENTS

e DATA OBJECT POINTERS
(primary, secondary)

« IDENTIFICATION DATA
ELEMENTS

* DESCRIPTIVE DATA
ELEMENTS

« DATA OBJECT
DEFINITIONS
(primary, secondary)

* END STATEMENT

Figure 5.2 PDS Attached / Detached Label Structure

5-6 Chapter 5. Data Product Labels

LABEL STANDARDS identifiers
IDENTIFICATION data elements that apply to all referenced data files
DESCRIPTIVE data elements that apply to all referenced data files
OBJECT=FILE statement (Repeats for each data product file)

» FILE CHARACTERISTIC data elements

= DATA OBJECT pointers

= |DENTIFICATION data elements

= DESCRIPTIVE data elements

= DATA OBJECT DEFINITION
e END_OBJECT=FILE statement
e END statement

Figure 5.3 provides an example of how this general structure appears in a combined detached
label that describes more than one data product file.

5.2.3 Minimal Labels

Use of the minimal label option is only allowed when the format of the data cannot be supported
by any PDS data object structure other than the FILE object.

For minimal labels the required use of data objects is waived. A minimal label does not require
any explicit PDS data object definitions or pointers to data objects. This applies to both attached
and detached labels.

Minimal labels must satisfy the following requirements:
(1) Provide the ability to locate the data associated with the label.
la. Attached labels

Since data objects and pointers are not required in the minimal label, by definition
the data follow immediately after the label.

1b. Detached Labels

Both the implicit and explicit use of the FILE object are supported. The
FILE_NAME keyword is required in the explicit FILE object, or in the label itself
if no FILE object is included.

(2) Provide the ability to locate a description of the format/content of the data. One of the
following must be provided in the minimal label:

2a. ADESCRIPTION = “<filename>”
This is a pointer to a file containing a detailed description of the data format,
which may be located in the same directory as the data or in the DOCUMENT
subdirectory.

Chapter 5. Data Product Labels

PDS LABEL

PDS_VERSION_ID
DD_VERSION_ID
LABEL_REVISION_NOTE

DATA_SET_ID

PRODUCT_ID
SPACECRAFT_ID
INSTRUMENT_NAME
TARGET_NAME
PRODUCT_CREATION_TIME

OBJECT = FILE
RECORD_TYPE -
FILE_ RECORDS =
ATIME_SERIES = "FILEA"
START _TIME -
STOP_TIME -
OBJECT = TIME_SERIES
END_OBJECT — TIME_SERIES
END_OBJECT = FILE
OBJECT = FILE
RECORD_TYPE _
FILE_RECORDS =
ATIME_SERIES = "FILEB"
START TIME -
STOP_TIME -
OBJECT — TIME_SERIES
END_OBJECT — TIME_SERIES
END_OBJECT — FILE
END

5-7

« LABEL STANDARDS
IDENTIFIERS

« IDENTIFICATION &
DESCRIPTIVE DATA ELEMENTS
for all files

For detached FILE A:
e FILE CHARACTERISTICS
DATA ELEMENTS

« DATA OBJECT POINTERS

« IDENTIFICATION / DESCRIPTIVE
DATA ELEMENTS

« DATA OBJECT DEFINITIONS

For detached FILE B:
e FILE CHARACTERISTICS
DATA ELEMENTS

* DATA OBJECT POINTERS

» IDENTIFICATION / DESCRIPTIVE
DATA ELEMENTS

« DATA OBJECT DEFINITIONS

e END STATEMENT

Figure 5.3 PDS Combined / Detached PDS Label Structure

5-8 Chapter 5. Data Product Labels

2b. DESCRIPTION = “<text appears here>"
This is either a detailed description of the data file, its format, data types, and use,
or it is a reference to a document available externally, e.g., a Software Interface
Specification (SIS) or similar document.

(3) When minimal labels are used, DATA_OBJECT_TYPE = FILE should be used in the
DATA_SET catalog file

5231 Implicit File Object (Attached and Detached Minimal Label)
The general structure for minimal labels with implicit file objects is as follows:

LABEL STANDARDS identifiers

FILE CHARACTERISTIC data elements
IDENTIFICATION data elements
DESCRIPTIVE data elements

END statement

5232 Explicit File Object (Detached Minimal Label)
The general structure for minimal labels with explicit file objects is as follows:

LABEL STANDARDS identifiers
IDENTIFICATION data elements
DESCRIPTIVE data elements
OBJECT=FILE statement

= FILE CHARACTERISTIC data elements

e END _OBJECT=FILE
e END statements

Figure 5.4 provides an example of how this general structure appears in a detached minimal
label. In this example, an implicit FILE object is used.

5.3 Detailed Label Contents Description

This section describes the detailed requirements for the content of PDS labels. The subsections
describe label standards identifiers, file characteristic data elements, data object pointers,
identification data elements, descriptive data elements, data object definitions, and the END
statement.

Chapter 5. Data Product Labels 5-9

PDS LABEL

PDS_VERSION_ID
DD_VERSION_ID
LABEL_REVISION_NOTE

/* FILE_CHARACTERISTICS */
RECORD_TYPE
RECORD_BYTES

FILE_NAME

FILE_RECORDS
LABEL_RECORDS

e LABEL STANDARDS
IDENTIFIERS

* FILE CHARACTERISTICS
DATA ELEMENTS

/* IDENTIFICATION DATA ELEMENTS */
DATA_SET_ID
PRODUCT_ID
SPACECRAFT_NAME
INSTRUMENT_NAME
TARGET_NAME
START_TIME
STOP_TIME

» IDENTIFICATION DATA
ELEMENTS

PRODUCT CREATION_TIME

/* DESCRIPTIVE DATA ELEMENTS */
FILTER_NAME =
OFFSET_MODE_ID
ADESCRIPTION

» DESCRIPTIVE DATA
ELEMENTS

END END STATEMENT

Figure 5.4 PDS Detached Minimal Label Structure

5.3.1 Label Standards Identifiers

Each PDS label must begin with the PDS_VERSION_ID data element. This element identifies
the published version of the Standards to which the label adheres, for purposes of both validation
as well as software development and support. For labels adhering to the standards described in
this document (the PDS Standards Reference, Version 3.4), the appropriate value is “PDS3”:

PDS_VERSION ID = PDS3

5-10 Chapter 5. Data Product Labels

The PDS does not require Standard Formatted Data Unit (SFDU) labels on individual products,
but they may be desired for conformance with specific project or other agency requirements.
When SFDU labels are provided on a PDS data product, the SFDU label must precede the
PDS_VERSION_ID keyword, thus:

CCSD.... [optional SFDU label]
PDS_VERSION_ID

DD_VERSION_ID

LABEL_REVISION_NOTE

SFDU labels in PDS products must follow the format standards described in SFDU Usage
chapter in this document.

The DD_VERSION_ID element identifies the version of the PDS Data Dictionary to which a
label complies. Current PDS practice is to identify a Data Dictionary version with the identifier
used for the PDS catalog build in which it resides, e.g., pdscatlr47, pdscat1r48, and so on. This
keyword will use the upper case representation of the catalog identifier, e.g., PDSCAT1R47,
PDSCAT1RA48, etc.

The LABEL_REVISION_NOTE element is a free form, unlimited-length character string
providing information regarding the revision status and authorship of a PDS label. It should
include at least the latest revision date and the author of the current version, but may include a
complete editing history. This element is required in all catalog labels.

Example
PDS_VERSION_ID = PDS3
DD_VERSION_ID = PDSCATI1R52

LABEL REVISION_NOTE
release; "
RECORD_TYPE
RECORD_BYTES

"1999-08-01, Anne Raugh (SBN), initial

FIXED_LENGTH
80

5.3.2 File Characteristic Data Elements

PDS data product labels contain data element information that describes important attributes of
the physical structure of a data product file. The PDS file characteristic data elements are:

RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

The RECORD_TYPE data element identifies the record characteristics of the data product file. A
complete discussion of the RECORD_TYPE data element and its use in describing data products
produced on various platforms is provided in the Record Formats chapter in this document. The
RECORD_BYTES data element identifies the number of bytes in each physical record in the
data product file. The FILE_RECORDS data element identifies the number of physical records
in the file. The LABEL_RECORDS data element identifies the number of physical records that

Chapter 5. Data Product Labels 5-11

make up the PDS product label.

Not all of these data elements are required in every data product label. Table 5.1 lists the
required (Req) and optional (Opt) file characteristic data elements for a variety of data products
and labeling methods for both attached (Att) and detached (Det) labels. Where (max) is
specified, the value indicates the maximum size of any physical record in the file.

Table 5.1: File Characteristic Data Element Requirements

Labeling Method |Att Det |Atlt Det Att Det |Att Det
RECORD TYPE FIXED LENGTH [VARIABLE LENGTH | STREAM UNDEFINED
RECORD_BYTES Req Reqg [Rmax Rmax [Omax - - -
FILE_RECORDS Req Req |Req Req |Opt Opt |- -
LABEL_RECORDS |Req - Req - Opt - - -

Note: The FILE_NAME keyword is required in detached minimal labels.

5.3.3 Data Object Pointers

“Data objects” are the actual data for which the structure and attributes are defined in a PDS
label. Each data product file contains one or more data objects. The PDS uses a pointer within
the product labels to identify the file locations for all objects in a data product.

Example

“TABLE
“TABLE

"DATA.DAT"
("DATA.DAT", 10 <BYTES>)

5.3.3.1 Use of Pointers in Attached Labels

Data object pointers are required in labels with one exception: attached labels that refer to only a
single object. In the absence of a pointer, the data object is assumed to start in the next physical
record after the PDS product label area. This is commonly the case with ASCII text files
described by a TEXT object and ASCII SPICE files described by a SPICE_KERNEL object. The
top two illustrations in Figure 5.5 show example files that do not require data object pointers.

Object pointers are required for all data objects, even when multiple data objects are stored in a
single data product file. Data object pointers in attached labels take one of two forms:

A<object_identifier> = nnn

where nnn represents the starting record number within the file (first record is numbered 1),
Or,

5-12 Chapter 5. Data Product Labels

A<object_identifier> = nnn <BYTES>
where nnn represents the starting byte location within the file (first byte is numbered 1).

See Chapter 12, Object Description Language (ODL) Specification and Usage, and Chapter 14,
Pointer Usage, in this document for a complete description of pointer syntax.

The bottom two illustrations in Figure 5.5 show the use of required data object pointers for
attached label products containing multiple data objects.

&
LABEL
END END v
A
SPICE
TEXT
KERNEL DATA
v
Record Byte
1 | ATABLE 1 = 11 1 AIMAGE = 161 <BYTES> A
ATABLE 2 = 31 AHISTOGRAM = 640161 <BYTES> LABEL
END END %
11 161
TABLE 1 IMAGE
31 DATA
—_— 640161
HISTOGRAM
A4

Figure 5.5 Data Object Pointers-Attached Labels

5.3.3.2 Use of Pointers in Detached and Combined Detached Labels

When the PDS data product label is a detached or a combined detached label, data object
pointers are required for all data objects referenced.

Chapter 5. Data Product Labels 5-13

The syntax for these data object pointers takes one of three forms:

(1) ~object_identifier = “filename”
(2) ~object_identifier = (“filename”, nnn)
(3) Mobject_identifier = (“filename”, nnn <BYTES>)

With respect to the above three cases:

(a) These object pointers reference either byte or record locations in data files that are
detached, or separate from, the label file.

(b) “Filename” is the name of the detached data file. File names must be in uppercase
characters.

(c) When no offset is specified, the first record is assumed.

(d) Records and bytes are numbered from 1.

In the first case, the data object is located at the beginning of the referenced file. In the second
case, the data object begins with the nnn™ physical record from the beginning of the referenced
file. In the third case, the data object begins with the nnn™ byte from the beginning of the
referenced file.

Examples
~IMAGE = ("DATA.IMG")
AENGINEERING_TABLE = ("DATA.DAT", 10)
“TABLE = ("DATA.TAB", 10 <BYTES>)

Figure 5.6 contains several examples of data object pointer usage for data product files with
detached or combined detached labels. The top example shows a data product consisting of a
HEADER data object and a TABLE data object together in a single file. The detached label for
this product includes pointers for both data objects, with the TABLE object starting at byte 601
of file A. The middle example illustrates a combined detached label for a data product contained
in two data objects, each in a separate file. A separate pointer is provided for each data object.
The bottom example shows a detached label for a data product containing multiple data objects.

The third example shows a complex data file structure. The HEADER object comes first in the
data file and, as the pointer (“*HEADER”) shows, it requires no explicit offset (record 1 is
assumed). Two parallel objects, a TABLE and an IMAGE, then follow the header. For this
section of the file, each record contains one row of the TABLE followed by one line of the
IMAGE. In the TABLE object description, the bytes of the IMAGE are accounted for as
ROW_SUFFIX_BYTES; in the IMAGE object description, the bytes of the TABLE object are
accounted for as LINE_PREFIX_BYTES. Both objects start in the same record, and therefore
have the same offset (4). See the IMAGE and TABLE object descriptions for more information
on prefix and suffix bytes. Had this data file been organized sequentially (so that, for example,
the HEADER was followed by the TABLE, which in turn was followed by the IMAGE), then
each object would have had its own offset.

5-14 Chapter 5. Data Product Labels

5.3.3.3 Note Concerning Minimal Attached and Detached Labels

Data object pointers do not exist in minimal labels. In these cases the format of the data is
usually fully described in a separate file or document.

< DATA b

<4———— | ABEL > Byte FILEA
N _y . +—>"| eADER
Y AMPLE 1. HEADER = "FILEA
- ATABLE = "FILEA", 601 <BYTES>)-
601
TABLE
FILEA
, ATABLE = "FILEA" >
EXAMPLE 2:
A SERIES = "FILEB" N TABLE
FILEB
SERIES
Record
AHEADER = "FILEA'—— p 1 HEADER
EXAMPLE 3: A IMAGE = ("FILEA", 4)—]
’ L
ATABLE = ("FILEA", 4)—|——p 4 = | IMAGE
<C
=

Figure 5.6 Data Object Pointers — Detached & Combined Labels

5.3.4 Data ldentification Elements

The data identification elements provide additional information about a data product that can be
used to relate the product to other data products from the same data set or data set collection. The
minimum set of identification elements required by the PDS standards (see the following
subsections) is sufficient to populate a high-level database like, for example, the PDS central
catalog. In addition, data preparers will choose additional identification elements from the
Planetary Science Data Dictionary (PSDD) to support present and future cataloging and search
operations.

Chapter 5. Data Product Labels 5-15

NOTE: When a data preparer desires a new element for a data product label - one not yet
recorded in the PSDD - it can be proposed for addition to the dictionary. Contact a PDS Data
Engineer for assistance.

534.1 Spacecraft Science Data Products

The following data identification elements must be included in product labels for all spacecraft
science data products:

DATA_SET_ID
PRODUCT _ID
INSTRUMENT_HOST_NAME
INSTRUMENT_NAME

TARGET_NAME

START_TIME

STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
PRODUCT_CREATION_TIME

5.34.2 Earthbased Science Data Products

The following data identification elements must be included in product labels for all Earth-based
science data products:

DATA_SET_ID
PRODUCT _ID
INSTRUMENT_HOST_NAME
INSTRUMENT_NAME
TARGET_NAME
START_TIME

STOP_TIME
PRODUCT_CREATION_TIME

5.3.4.3 Ancillary Data Products

The following data identification elements must be included in product labels for all ancillary
data products. Ancillary products may be more general in nature, supporting a wide variety of
instruments for a particular mission. For example, SPICE data sets, general engineering data

sets, and uplink data are considered ancillary data products.

DATA_SET_ID
PRODUCT _ID
PRODUCT_CREATION_TIME

The following identification elements are highly recommended, and should be included in
ancillary data products whenever they apply:

INSTRUMENT_HOST_NAME
INSTRUMENT_NAME
TARGET_NAME
START_TIME

5-16 Chapter 5. Data Product Labels

STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

5.3.5 Descriptive Data Elements

In addition to the data identification elements required for various types of data, PDS strongly
recommends including additional data elements related to specific types of data. These
descriptive elements should include any elements needed to interpret or process the data objects
or which would be needed to catalog the data product to support potential search criteria at the
product level.

Recommendations for descriptive data elements to be included come from the PDS mission
interface personnel as well as the data producer’s own suggestions. These additional data
elements are selected from the Planetary Science Data Dictionary.

NOTE: When a data element is needed for a data product label, but is not yet recorded in the
PSDD, it may be proposed for addition to the dictionary. Contact a PDS data engineer for
assistance in submitting new data elements for inclusion in the PSDD.

Pointers are sometimes used in a PDS label to provide a shorthand method for referencing either
a set of descriptive data elements (e.g., "DESCRIPTION) or a long descriptive text passage
relevant to several data product labels.

5.3.6 Data Object Definitions

The PDS requires a separate data object definition within the product label for each object in the
product, to describe the structure and associated attributes of each constituent object. Each object
definition, whether for a primary or a secondary object, must have a corresponding object pointer
as described in Section 5.3.3.

Object definitions are of the form:
OBJECT = aaa where aaa is the name of the data object

END_OBJECT =aaa

The PDS has designed a set of standard data object definitions to be used for labeling products.
Among these standard objects are those designed to describe structures commonly used for
scientific data storage. Appendix A provides the complete set of PDS object definition
requirements, along with examples of product labels.

Pointers are sometimes used in a PDS label to provide a shorthand method for including a
standard set of sub-objects referenced in several data product labels. For example, a pointer
called “*"STRUCTURE?” is often used to include a set of COLUMN sub-objects for a TABLE
structure used in many labels of the same data set.

Chapter 5. Data Product Labels 5-17

5.3.7 End Statement

The END statement ends a PDS label. Where required by an outside agency, the END statement
may be followed by one or more SFDU labels.

The PDS does not require SFDU labels on individual products, but they may be required to
conform with specific project or other agency requirements. If SFDUs are provided on a data
product, they must follow the standards described in the SFDU Usage chapter in this document.
In some, but not all cases, another SFDU label is required after the PDS END statement to
provide “end label” and sometimes “start data” information.

5.4 Syntax for Element Values

The values of keywords must be expressed in a manner appropriate to the type of the keyword.
Data types for element values are specified in the element definitions contained in the PSDD.
The syntax rules for expressing these values in PDS labels are discussed in detail in Section 12.3
of Chapter 12: Object Description Language Specification and Usage. A brief summary is
provided here for reference.

Character Strings

Character strings are enclosed in double quotes unless they consist entirely of uppercase letter,
number, and/or underscore (_) characters.

Examples
NAME = FILTER Correct
NAME = "FILTER WAVELENGTH" Correct
NAME = FILTER WAVELENGTH Correct
NAME = FILTER WAVELENGTH Incorrect
Integers

Integer values must be presented as a string of digits, optionally preceded by a sign. Specifically,
no comma or point should be used to group digits. Values that are to be interpreted as integers
must not be enclosed in quotation marks of any kind.

Examples
ITEMS =12 Correct
REQUIRED STORAGE BYTES = 43364 Correct
ITEMS "12" Incorrect

REQUIRED_STORAGE_BYTES 43,364 Incorrect

5-18 Chapter 5. Data Product Labels

Floating-Point Numbers

Real data values may be expressed as either floating-point numbers with a decimal point or in
scientific notation with an exponent. Scientific notation is formatted in the standard manner for
program 1/O, using the letter “E” as an exponentiation operator. Values that are to be interpreted
as real numbers must not be enclosed in quotation marks of any kind.

Examples
TELESCOPE_LATITUDE = 33.476 Correct
TELESCOPE_LATITUDE = 3.3476E+01 Correct
TELESCOPE_LATITUDE = "33.476" Incorrect
TELESCOPE_LATITUDE = 3.3476 x 10701 Incorrect

Dates and Times

Date and time values must be in the PDS standard date/time format: YYYY-MM-
DDThh:mm:ss.sss. Date and time values must never be enclosed in quotes of any kind.

Examples

START TIME 1990-08-01T23:59:59 Correct

START TIME "1990-08-01T23:59:59" Incorrect

5.5 Locally-defined Data Elements

The PSDD contains a large set of common (global) data elements (keywords) and small sets of
locally-defined data elements. The set of common data elements are available for use in any
label. Locally-defined data elements may only be used in data product labels.

5.5.1 Justification for Locally-defined Data Elements
There are two justifications for when a locally-defined keyword can be created:

a) the scope of use is limited / local to a small set of data products within a single mission or
campaign, or is so specific that only a very few data providers would make use of the locally-
defined data element (keyword).

Examples of data elements in the PSDD having limited scope:

MAXIMUM B1950 RING LONGITUDE [PDS-RINGS]

The maximum_B1950_ring_longitude element specifies the maximum inertial longitude
within a ring area relative to the B1950 prime meridian, rather than to the J2000 prime
meridian. The prime meridian is the ascending node of the planet's invariable plane on the
Earth's mean equator of B1950. Longitudes are measured in the direction of orbital motion

Chapter 5. Data Product Labels 5-19

b)

along the planet's invariable plane to the ring's ascending node, and thence along the ring
plane. Note: For areas that cross the prime meridian, the maximum ring longitude will have
a value less than the minimum ring longitude.

INSTRUMENT FORMATTED DESC [PDS-CN]

The instrument_formatted_desc element contains the formatted instrument descriptions.
These descriptions represent the information collected for the PDS Version 1.0 instrument
model and were created by extracting instrument information from several tables in the
catalog data base.

These descriptions represent an archive since the tables have been eliminated as part of the
catalog streamlining task.

DATA SET LOCAL ID [PDS-SBN]

The DATA_SET_LOCAL_ID element provides a short (of order 3 characters) acronym used
as the local ID of a data set (Example value: IGLC). It may also appear as the first element of
file names from a particular DATA_SET (Example value:IGLCINDX.LBL).

the common instance, and any other local instances, currently defined in the PSDD are
inadequate in some descriptive capacity:

* the data element definition is too restrictive or inappropriate
* the length of the keyword-value is too short
» different types of units

A possible scenario for the above could be that the Cassini mission wants to use the
DATA_QUALITY_ID keyword.

DATA QUALITY ID[PSDD]- CHAR(3)

The data_quality_id element provides a numeric key which identifies the quality of data
available for a particular time period. The data_quality_id scheme is unique to a given
instrument and is described by the associated data_quality desc element.

But, the Cassini mission wants to re-use the data element in a way that is different from the
instance(s) currently defined in the PSDD.

DATA QUALITY ID [CASSINI] - CHAR(50)

The data_quality_id element provides a short acronym or identifier of the qualitative state in
which the data resided when the data was generated by the instrument team. The
data_quality_id is unique to the Cassini mission and is described by the associated
data_quality desc element.

5-20 Chapter 5. Data Product Labels

5.5.2 Identification of Locally-defined Data Elements
Locally-defined instances of data elements (keywords) are identified in data product labels as:

<namespace>:<keyword_name>

where <namespace> is the unique namespace to which the keyword is
designated.

<keyword_name> is the name of the keyword being included in the
data product label.

If there are multiple instances of a keyword, then the specific instance of use is identified as
follows:

Example:
TARGET NAME = "EARTH" (namespace = PSDD)
CASSINI:TARGET NAME = "EARTH" (namespace = CASSINI)
VOYAGER:TARGET NAME = "MARS" (namespace = VOYAGER)

In the above example, the PSDD contains three separate instances of the TARGET_NAME
keyword:

a) the common (PSDD) instance which the PDS defined and which the PDS community at
large agreed upon.

b) the CASSINI instance which the Cassini project defined.

c) the VOYAGER instance which the VVoyager project defined.

5.5.3 Review and Use of Locally-defined Data Elements
The following are recommendations on the review and use of locally defined keywords:
1. The custodian of a namespace is to be a PDS node; or the entity to which the PDS node

delegates authority (e.g., mission); or other agencies in a cooperative agreement with
NASA and working with the PDS (e.g., ESA).

2. The custodian has initial responsibility for NAMESPACE and all locally defined
elements which use the NAMESPACE.

3. The responsibility for NAMESPACE may be transferred if agreeable to the custodian and
the receiving party.

4. The responsibility for locally defined elements may be transferred if agreeable to the
custodian and the receiving party.

Chapter 5. Data Product Labels 5-21

10.

Custodians (e.g., missions/campaigns) being phased out are expected to transfer all
responsibilities to a continuing party (i.e., there is always a responsible party actively
engaged in overseeing the use of the NAMESPACE and locally defined elements which
use the NAMESPACE.

Control authority (responsible party) has absolute authority over element definitions.

A non-originating user who reuses a locally defined keyword must conform to

interpretations of the control authority, including retroactive adjustments (i.e., the user of
a locally defined keyword is at risk that the control authority may alter one or more of the
keyword attributes; such as the definition, without notifying outside users of the change).

PDS recommends that non-originating users "clone" elements into a new local dictionary
rather than reusing them (e.g., CASSINI:DATA_QUALITY_ID would become
MER:DATA_QUALITY_ID if reused by the MER mission). This is because non-
originating users are at risk that the keyword may be altered by the control authority and
the control authority does not have an obligation to notify anyone of the change.

'Promoting' locally defined keywords to full PSDD standing is not permitted (i.e., locally
defined keywords remain locally defined throughout the life of the keyword). A locally
defined keyword may be proposed independently for use in the global PSDD by
submitting the keyword element definition for the full PSDD approval process.

Locally defined keywords should not take on a scope outside of the originating
mission/campaign.

5-22 Chapter 5. Data Product Labels

(This page intentionally left blank.)

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-1

Chapter 6. Data Set / Data Set Collection
Contents and Naming

The Data Set / Data Set Collection Contents and Naming standard defines the conventions for
maintaining consistency in the contents, organization and naming of archive quality data sets.

Data Sets are defined in terms of Data Products, which were introduced in Chapter 4. A data set
IS an aggregation of data products with a common origin, history, or application. A data set
includes primary (observational) data plus the ancillary data, software, and documentation
needed to understand and use the observations. Files in a data set share a unique data set name,
share a unique data set identifier, and are described by a single DATA_SET catalog object (or
equivalent).

Data Set Collections are defined in terms of data sets. A data set collection is an aggregation of
several data sets that are related by observation type, discipline, target, or time which are to be
treated as a unit; that is, they are intended to be archived and distributed together. Data sets in a
data set collection share a unique data set collection name, share a unique data set collection
identifier, and are described by a single DATA_SET_COLLECTION object (or equivalent).
One of the primary considerations in creating a data set collection is that the collection as a
whole provides more utility than the sum of the utilities of the individual data sets.

Figure 6.1 shows the relationships among Data Products, Data Sets, and a Data Set Collection.

DATA SET COLLECTION

DATA SET #1 DATA SET #2

| !
—

PRIMARY PRIMARY ANCILLARY DATA PRODUCTS
DATA DATA — CALIBRATION

PRODUCT #1 PRODUCT #2 | EEOETHY
- DOCUMENTATION
L CATALOG INFORMATION
— INDEX FILES
— DATA DICTIONARY FILES
— GAZETTEER
— SOFTWARE

Chapter 6. Data Set/Data Set Collection Contents and Naming

Figure 6.1 Relationships among a Data Set Collection, its Data Sets, and their Data Products.

Note that with respect to Figure 6.1, additional data sets (e.g., Data Set #2) have structure similar
to Data Set #1. And, Ancillary Data Products are often organized into directories corresponding
to the subject areas shown (see Chapter 19 for a more detailed description of each directory).

Ancillary Data Products may include any or all of the following:

6.1

Calibration - Data products used in the conversion of raw measurements to physically
meaningful values or data products needed to use the data.

Geometry - Data products needed to describe the observing geometry. Examples include
SEDRs and SPICE files.

Documentation - Data products which describe the mission, spacecraft, instrument, and/or
data set. These may include references to science papers or the papers themselves.

Catalog Information - Descriptive information about a data set expressed in Object
Description Language (ODL) and suitable for loading into a catalog. For more information,
see Appendix B.

Index Files - Information that allows a user to locate the data of interest - a table of contents.
An example might be a table mapping latitude/longitude ranges to file names.

Data Dictionary Files - An extract of the Planetary Science Data Dictionary (PSDD) that is
pertinent to the data set and expressed in ODL.

Gazetteer - Information about the named features on a target body associated with the data
set.

Software - Software libraries, utilities, and/or application programs to access/process the
data products.

Data Set Naming and Identification

Each PDS data set must have a unique name (DATA_SET_NAME) and a unique identifier
(DATA_SET_ID), both formed from up to seven components. The components are listed here;
valid assignments for each component are described in Section 6.3:

Instrument host

Target

Instrument

Data processing level number
Data set type (optional)

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-3

Description (optional)
Version number

A DATA _SET_NAME must not exceed 60 characters in length. Where the character limitation
is not exceeded, the full-length name of each component is used. If the full-length name is too
long, an acronym is used to abbreviate components of the name. Where possible, each
component of the DATA_SET_NAME should identify and reflect the corresponding (acronym)
component used in forming the DATA_SET _ID.

The DATA_SET _ID cannot exceed 40 characters in length. Each component of the
DATA_SET _ID is an acronym that identifies and reflects the corresponding (full-name)
component used in forming the DATA_SET_NAME. Within the DATA_SET _ID, acronyms are
separated by hyphens.

Multiple instrument hosts, instruments, or targets are referenced ina DATA_SET_NAME or
DATA_SET_ID by concatenation of the values with a forward slash, "/", which is interpreted as
"and." The slash may not be used in any other capacity ina DATA_SET_ID.

6.2 Data Set Collection Naming and Identification

Each PDS data set collection must have a unique name (DATA_SET_COLLECTION_NAME)
and a unique identifier (DATA_SET_COLLECTION_ID), both formed from up to six
components. A data set collection may contain data sets that cover several targets, be of
different processing levels, or have different instrument hosts and instruments. Since the
individual data sets will be identified by their own data set names, some of this information need
not be repeated at the collection level. Therefore, the DATA_SET_COLLECTION_NAME uses
a subset of the DATA_SET_NAME components in addition to a new component, the collection
name, which identifies the group of related data sets. The components are listed here; valid
assignments for each component are described in Section 6.3:

Collection name

Target

Data processing level number (optional)
Data set type (optional)

Description (optional)

Version number

A DATA_SET_COLLECTION_NAME must not exceed 60 characters in length. Where the
character limitation is not exceeded, the full-length name of each component is used. If the full-
length name is too long, an acronym should be substituted. Where possible, each component of
the DATA_SET_COLLECTION_NAME should identify and reflect the corresponding
(acronym) component used in forming the DATA_SET_COLLECTION_ID.

The DATA_SET_COLLECTION_ID must not exceed 40 characters in length. Each component
is an acronym that identifies and reflects the corresponding (full-name) component used in

6-4 Chapter 6. Data Set/Data Set Collection Contents and Naming

forming the DATA_SET_COLLECTION_NAME.

Multiple targets or data processing levels are referenced in the data set collection name or
identifier by concatenation of the values with a forward slash (/) which is interpreted as "and."

6.3 Name and ID Components

6.3.1 Restrictions on DATA_SET_ID and DATA_SET _COLLECTION_ID

Within the DATA_SET_ID and DATA_SET_COLLECTION_ID, acronyms are separated by
hyphens. The only characters allowed are:

Uppercase characters, A-z

Digits, 0-9

The hyphen character, "-"

The forward slash, "/"

The period character, ".", but only as part of a numeric component (e.g., "Vv1.0" but not
"C.A")

6.3.2 Standard Acronyms, Abbreviations, and Assignments

This section details the standard acronyms and abbreviations required for formulating the
DATA_SET_ID and DATA_SET_COLLECTION_ID values. They are also recommended for
use, as appropriate, in the formation of other NAME- and ID-class element values. Standard
values for data dictionary elements mentioned in the following sections are listed in the PSDD.
New values are added to these lists as needed by the PDS data engineers.

1. Instrument host name and ID values are selected from the standard value list of the
corresponding PSDD entry (INSTRUMENT_HOST_NAME or INSTRUMENT_HOST _ID
data element). Note that the acronym EAR has been used for Earth-based data sets without a
specific instrument host.

2. Collection names and IDs are created as needed by the data preparers in conjunction with
the PDS data engineer. Current IDs and their corresponding names include:

GRSFE Geological Remote Sensing Field Experiment
IHW International Halley Watch
PREMGN Pre-Magellan

3. Target name values are selected from the standard values listed in the PSDD for the
TARGET_NAME element. Target acronyms are selected from the following list:

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-5

Target 1D Target Name
A Asteroid
C Comet
CAL Calibration
D Dust
E Earth
H Mercury
J Jupiter
L Moon
M Mars
MET Meteorite
N Neptune
P Pluto
R Ring
S Saturn
SA Satellite
SS Solar System
U Uranus
V Venus
X Other, (e.g., Checkout)
Y Sky

NOTE: Satellites or rings are referenced in DATA_SET_NAMEs and DATA_SET_IDs by
the concatenation of the satellite or ring identifier with the associated planet identifier; for
example:

JR Jupiter’s rings
JSA Jupiter’s satellites

If Jupiter data are also included in the ring and/or satellite data set then only Jupiter (“J”) is
referenced as the target.

Note that in some cases this component represents the TARGET_TYPE rather than the target
name, for example:

A Asteroid

C Comet
CAL Calibration
MET Meteorite

Valid values for the TARGET_TYPE data element are listed in the PSDD.

4. Instrument name and ID values are taken either from the corresponding PSDD element, or
from the following list of values designated for certain types of ancillary data:

6-6 Chapter 6. Data Set/Data Set Collection Contents and Naming

Names: INSTRUMENT_NAME data element in the PSDD
IDs: INSTRUMENT _ID data element in the PSDD
Ancillary Data: ENG or ENGINEERING for engineering data sets

SPICE for SPICE data sets

GCM for Global Circulation Model data
SEDR for supplemental EDR data

POS for positional data

5. Data processing level number is the National Research Council (NRC) Committee on Data
Management and Computation (CODMAC) data processing level number.

Normally a data set contains data of one processing level. PDS recommends that data of
different processing levels be treated as different data sets. However, if it is not possible to
separate the data, then a single data set with multiple processing levels will be accepted. Use
the following guidelines when specifying the data processing level number component of the
data set identifier and name:

(a) the processing level number of the largest subset of data or
(b) the highest processing level number if there is no predominant subset.

Level Type Data Processing Level Description
1 Raw Data Telemetry data with data embedded.
2 Edited Data Corrected for telemetry errors and split or decommutated into a data set for a given

instrument. Sometimes called Experimental Data Record. Data are also tagged with
time and location of acquisition. Corresponds to NASA Level 0 data.

3 Calibrated Data Edited data that are still in units produced by instrument, but that have been corrected
so that values are expressed in or are proportional to some physical unit such as
radiance. No resampling, so edited data can be reconstructed. NASA Level 1A.

4 Resampled Data Data that have been resampled in the time or space domains in such a way that the
original edited data cannot be reconstructed. Could be calibrated in addition to being
resampled. NASA Level IB.

5 Derived Data Derived results, as maps, reports, graphics, etc. NASA Levels 2 through 5.

6 Ancillary Data Nonscience data needed to generate calibrated or resampled data sets. Consists of
instrument gains, offsets, pointing information for scan platforms, etc.

7 Correlative Data Other science data needed to interpret space-based data sets. May include ground-
based data observations such as soil type or ocean buoy measurements of wind drift.

8 User Description Description of why the data were required, any peculiarities associated with the data
sets, and enough documentation to allow secondary user to extract information from
the data.

N N Not Applicable

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-7

6. Data set type provides additional identification if, for example, the CODMAC data
processing level component is not sufficient to identify the type or level of data. Following is
a list of valid IDs and names that may be used for this component.

NOTE: Several of the values in this table are currently unique to a particular mission (e.g.,
BIDR and MIDR were used on Magellan). These values may be used on other missions, if
deemed appropriate.

1D Name
ADR Analyzed Data Record
BIDR Basic Image Data Record
CDR Composite Data Record
CK SPICE CK (Pointing Kernel)
DDR Derived Data Record
(possibly multiple instruments)
DIDR Digitalized Image Data Record
DLC Detailed Level Catalog
EDC Existing Data Catalog
EDR Experiment Data Record
EK SPICE EK (Event Kernel)
GDR Global Data Record
IDR Intermediate Data Record
IK SPICE IK (Instrument Kernel)
LSK SPICE LSK (Leap Second Kernel)
MDR Master Data Record
MIDR Mosaicked Image Data Record
ODR Original Data Record
PCK SPICE PCK (Planetary Constants Kernel)
PGDR Photograph Data Record
RDR Reduced Data Record
REFDR Reformatted Data Record
SDR System Data Record
SEDR Supplementary Experiment Data Record
SPK SPICE SPK (Ephemeris Kernel)
SUMM Summary (data) (to be used in the browse function)
SAMP Sample data from a data set (not subsampled data)

7. Description is optional, but allows the data provider to describe the data set better — for
example, to identify a specific comet or asteroid. Following is a list of example values (both
IDs and names) that can be used for this component.

6-8

Chapter 6. Data Set/Data Set Collection Contents and Naming

1D Name

ALT/RAD Altimetry and Radiometry

BR Browse

CLOUD Cloud

ELE Electron

ETA-AQUAR Eta-Aquarid Meteors
FULL-RES Full Resolution
GIACOBIN-ZIN Comet P/Giacobini-Zinner
HALLEY Comet P/Halley

ION lon

LOS Line of Sight Gravity

MOM Moment

PAR Parameter

SA Spectrum Analyzer
SA-4.0SEC Spectrum Analyzer 4.0 second
SA-48.0SEC Spectrum Analyzer 48.0 second

8. Version number is determined as follows:

(@)

(b)

6.4 Examples

If there is not a previous version of the PDS data set/data set collection, then use
Version 1.0.

If a previous version exists, then PDS recommends the following:

If the data sets/data set collections contain the same set of data, but use a
different medium (e.g., CD-ROM), then no new version number is

required (i.e., no new data set identifier). The inventory system will handle
the different media for the same data set.

If the data sets/data set collections contain the same set of data, but have
minor corrections or improvements such as a change in descriptive
labeling, then the version number is incremented by a tenth. For example,
V1.0 becomes V1.1.

If a data set/data set collection has been reprocessed, using, for example, a
new processing algorithm or different calibration data, then the version
number is incremented by one (V1.0 would become VV2.0). Also, if one
data set/data set collection contains a subset, is a proper subset, or is a
superset of another, then the version number is incremented by one.

For a data set containing the first version of Mars Cloud Data derived from the Mariner 9, Viking
Orbiter 1, and Viking Orbiter 2 imaging subsystems, the data set name and identifier would be:

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-9

"MR9/V01/v02 MARS ISS/VIS 5 CLOUD V1.0"
"MR9/V01/vV02-M-ISS/VIS-5-CLOUD-V1.0"

DATA SET NAME
DATA SET ID

In this example the optional data set type is not used. The other components are:

* Instrument hosts are Mariner 9, Viking Orbiter 1 and Viking Orbiter 2

* Target is Mars

* Instruments are the Imaging Science Subsystem and Visual Imaging Subsystem
» Data Processing Level number is 5

* Description is CLOUD

* Version number is V1.0

Note that the individual components in the DATA_SET _ID closely match the corresponding
components used in the DATA_SET_NAME.

The Pre-Magellan Data Set Collection contains radar and gravity data similar to the kinds of data
that Magellan collected and was used for pre-Magellan analyses of VVenus and for comparisons to
actual Magellan data. In conversation the data set might be described as Pre-Magellan Earth,
Moon, Mercury, Mars, and Venus Resampled and Derived Radar and Gravity Data Version 1.0.
The data set collection name and 1D were:

"PRE-MAGELLAN E/L/H/M/V 4/5 RADAR/GRAVITY
DATA V1.0"

DATA SET COLLECTION_NAME

DATA SET COLLECTION ID "PREMGN-E/L/H/M/V-4/5-RAD/GRAV-V1.0"

6-10 Chapter 6. Data Set/Data Set Collection Contents and Naming

(This page intentionally left blank.)

Chapter 7. Date/Time Format 7-1

Chapter 7. Date/Time Format

PDS has adopted a subset of the International Standards Organization Standard (ISO/DIS) 8601
standard entitled “Data Element and Interchange Formats - Representations of Dates and Times”,
and applies the standard across all disciplines in order to give the system generality. See also
Dates and Times in Object Description Language (Chapter 12, Section 12.3.2) of this document.

It is important to note that the ISO/DIS 8601 standard covers only ASCII representations of dates
and times.

7.1 Date/Times
In the PDS there are two recognized date/time formats:

CCYY-MM-DDTHH:MM:SS.sssZ (preferred format)
CCYY-DDDTHH:MM:SS.sssZ

Each format represents a concatenation of the conventional date and time expressions with the
two parts separated by the letter T:

CcC - century (00-99)

YY - year (00-99)

MM - month (01-12)

DD - day of month (01-31)

DDD - day of year (001-366)

T - date/time separator

HH - hour (00-23)

MM - minute (00-59)

SS - second (00-59)

SSS - fractions of second (000-999)

The time part of the expression represents time in Universal Time Coordinated (UTC), hence the
Z at the end of the expression (see Section 7.3.1 for further discussion). Note that in both the
PDS catalog files and data product labels the “Z” is optional and is assumed.

PDS standard date/time format, i.e., the preferred date/time format, is: CCYY-MM-
DDTHH:MM:SS.sssZ.

Date/Time Precision
The above date/time formats may be truncated on the right to match the precision of the
date/time value in any of the following forms:

7-2 Chapter 7. Date/Time Format

1998

1998-12

1998-12-01
1998-12-01T23
1998-12-01T23:59
1998-12-01T23:59:58
1998-12-01T723:59:58.1

ODL Date/Time Information

Chapter 12, Object Description Language (ODL) Specification and Usage, Section 12.3.2, Dates
and Times, of this document provides additional information on the use of ODL in date/time
formation, representation, and implementation.

7.2 Dates
The PDS allows dates to be expressed in conventional and native (alternate) formats.

7.2.1 Conventional Dates

Conventional dates are represented in ISO/DIS 8601 format as either year (including century),
month, day-of-month (CCYY-MM-DD), or as year, day-of-year (CCYY-DDD). The hyphen
character (*-*) is used as the field separator in this format. The former is the preferred format for
use in PDS labels and catalog files and is referred to as PDS standard date format, but either
format is acceptable.

7.2.2 Native Dates

Dates in any format other than the ISO/DIS 8601 format described above are considered to be in
a format native to the specific data set, thus “native dates”. Native date formats are specified by
the data preparer in conjunction with the PDS data engineer. Mission-elapsed days and time-to-
encounter are both examples of native dates.

7.3 Times
The PDS allows times to be expressed in conventional and native (alternate) formats.

7.3.1 Conventional Times

Conventional times are represented as hours, minutes and seconds according to the ISO/DIS
8601 time format standard: HH:MM:SS[.sss]. Note that the hours, minutes, and integral seconds
fields must contain two digits. The colon (":") is used as a field separator. Fractional seconds
consisting of a decimal point (the European-style comma may not be used) and up to three digits
(thousandths of a second) may be included if appropriate.

Coordinated Universal Time (UTC) is the PDS time standard and must be formatted in the

Chapter 7. Date/Time Format 7-3

previously described ISO/DIS 8601 standard format. The letter "Z", indicating the civil time
zone at Greenwich (i.e., GMT), may be appended to the time if desired and appropriate. Note
that the relationship between UTC and GMT has varied historically and with observer context.
UTC is the PDS time standard; a time with an appended 'Z" will be interpreted within the PDS as
UTC, regardless of any changes or local variations in the GMT/UTC relationship.

The START_TIME and STOP_TIME data elements required in data product labels and catalog
templates use the UTC format. For data collected by spacecraft-mounted instruments, the date/
time must be a time that corresponds to “spacecraft event time”. For data collected by
instruments not located on a spacecraft, this time shall be an earth-based event time value.

Adoption of UTC (rather than spacecraft-clock-count, for example) as the standard facilitates
comparison of data from a particular spacecraft or ground-based facility with data from other
sources.

7.3.2 Native Times

Times in any format other than the ISO/DIS 8601 format described above are considered to be in
a format native to the data set, and thus “native times”. The NATIVE_START_TIME and
NATIVE_STOP_TIME elements hold the native time equivalents of the UTC values in
START_TIME and STOP_TIME, respectively.

There is one native time of particular interest, however, which has specific keywords associated
with it. The spacecraft clock reading (that is, the “count”) often provides the essential timing
information for a space-based observation. Therefore, the elements
SPACECRAFT_CLOCK_START_COUNT and SPACECRAFT_CLOCK_STOP_COUNT are
required in labels describing space-based data. This value is formatted as a string to preserve
precision.

Note that in rare cases in which there is more than one native time relevant to an observation, the
data preparer should consult a PDS data engineer for assistance in selecting the appropriate PDS
elements.

The following paragraphs describe typical examples of native time formats.

1. Spacecraft Clock Count (sclk) - Spacecraft clock count (sclk) provides a more precise
time representation than event time for instrument-generated data sets, and so may be
desirable as an additional time field. In a typical instance, a range of spacecraft-clock-
count values (i.e., a start-and a stop-value) may be required.

Spacecraft clock count (SPACECRAFT_CLOCK_START_COUNT and
SPACECRAFT_CLOCK_STOP_COUNT) shall be represented as a right-justified
character string field with a maximum length of thirty characters. This format will
accommodate the extra decimal point appearing in these data for certain spacecraft and
other special formats, while also supporting the need for simple comparison (e.g., “>” or
<”) between clock count values.

7-4

Chapter 7. Date/Time Format

Note that if the spacecraft clock values are not strictly numeric strings (for example, if
they contain colon separators), care should be taken in dealing with blank padding and
justification of the string value. If necessary, non-numeric strings may be left-justified to
ensure that clock values will sort in the expected way.

Example
SPACECRAFT_CLOCK_START_COUNT = " 1234:36.401" correct
SPACECRAFT_CLOCK_START COUNT = "1234:36.401 " incorrect

Longitude of Sun - Longitude of Sun (“Ls”) is a derived data value that can be
computed, for a given target, from UTC.

Ephemeris Time - Ephemeris time (ET) is calculated as “TAI + 32.184 sec. + periodic

terms”. The NAIF S and P kernels have data that are in ET, but the user (via NAIF

ephemeris readers which perform data conversion) can obtain the UTC values.

. Relative Time - In addition to event times, certain “relative time” fields will be needed to

represent data times or elapsed times. Time-from-closest-approach is an example of such
a data element. These times shall be presented in a (D,H,M,S) format as a floating point
number, and should include fractional seconds when necessary. The inclusion of “day” in
relative times is motivated by the possible multi-day length of some delta times, as could
occur, for example, in the case of the several-month Galileo Jupiter orbit.

Local Times - For a given celestial body, LOCAL_TIME is the hour relative to midnight
in units of 1/24th the length of the solar day for the body.

6. Alternate Time Zones (Relative to UTC) - Alternate time zones (e.g., YYYY-MM-
DDTHH:MM:SS.SSS + HH:MM) may not be used in a PDS label. The only allowed time
formats are:

(1) YYYY-MM-DDTHH:MM:SS.SSS.
(2) YYYY-DOYTHH:MM:SS.SSS.

The above only applies to keywords with a data type of TIME. For example,
START_TIME and END_TIME are defined as having keyword-values of type TIME and
are subject to the above restrictions. NATIVE_START_TIME and
NATIVE_STOP_TIME are defined as having keyword-values of type CHARACTER
and as such can be expressed by a string of characters, including offsets to UTC).

Chapter 8. Directory Types and Naming 8-1

Chapter 8. Directory Types and Naming

The Directory Naming standard defines the conventions for naming directories on a data volume.
This chapter lists the standard directories established by PDS, plus the rules for forming
subdirectory names and abbreviations.

8.1 Standard Directory Names

When any of the following directories are included on an archive product, the following standard
directory naming conventions are used.

Directory Contents

CATALOG PDS catalog files

DOCUMENT Documentation, supplementary and ancillary information to assist in
understanding and using the data products

EXTRAS “Value added” elements included by the data preparer, but outside the scope
of the PDS archive requirements

GAZETTER Tables of information about the geological features of a target
INDEX Indices to assist in locating data of interest

LABEL “Include” files which describe specific aspects of the data format and
organization

SOFTWARE Utilities, application programs, or subprograms used to access or process the
data

The following standard directory names are recommended for use on archive volumes. Note that
these directory names are reserved for the uses described below. That is, if they appear on an
archive volume, they must contain the indicated information:

CALIB Calibration files used in the original processing of the data, or needed to use
the data

GEOMETRY Files describing the observational geometry (e.g., SEDRs, SPICE kernels)
BROWSE Reduced resolution versions of data products
DATA Contains one or more subdirectories of data products. The DATA

subdirectory is used to unclutter the root directory of a volume by providing a
single entry point to multiple data subdirectories.

8-2 Chapter 8. Directory Types and Naming

Note that some data sets may not contain all the components above and, as a result, do not need
all of the directories listed. For example, many image data sets do not include geometry files and
so do not need a GEOMETRY directory. See the Volume Organization and Naming chapter of
this document for a list of required and optional subdirectories on any specific volume.

8.2 Formation of Directory Names

1. A directory name must consist of only uppercase alphanumeric characters and the
underscore character (i.e., A-Z, 0-9, or “_"). No lowercase letters (i.e., a-z) or special
characters (e.g., “#”, “&”, “*”) are allowed.

2. Directory names must comply with the 1ISO 9660 Level 2 standard and not exceed 31
characters in length. Users are encouraged to keep directory names as brief as practical
in the interests of providing succinct file paths and easy to read directory listings.

3. The first letter of a directory name must be an alphabetic character, unless the directory
name represents a year (e.g., 1984).

4. 1f numeric characters are used as part of the name (e.g., DIR1, DIR2, DIR3) the numeric
part should be padded with leading zeros up to the maximum size of the numeric
(DIR0001, DIR0002, DIR3267).

5. Directories which contain a range of similarly named files must be assigned directory
names using the portion of the filename which encompasses all the files in the directory,
with “X’s” used to indicate the range of values of actual filenames in the directory.

For example, the PDS Uranus Imaging CD-ROM disk contains image files that have
filenames that correspond to SPACECRAFT_CLOCK_START_COUNT values. The
directory that contains the image files ranging from C2674702.IMG through
C2674959.IMG has the directory name C2674XXX.

6. Directory names must use full length terms whenever possible (e.g., SATURN,
MAGELLAN, CRUISE, NORTH, DATA, SOFTWARE). Otherwise, directory names
must be constructed from abbreviations of full-length names using the underscore
character to separate abbreviated terms, if possible. The meaning of the directory name
should be clear from the abbreviation and from the directory structure.

Chapter 8. Directory Types and Naming 8-3

For example, the following directory structure can be found on the VVoyager 2 Images of
Uranus CD-ROM Volume 1:

ROOT —— ARIEL
—— DOCUMENT
— INDEX
—— OBERON
— TITANIA
— UMBRIEL
— UNKNOWN
—— URANUS —

C2674XXX
C2675XXX

——— U_RINGS —

— 6.2687XXX
—— C2674XXX

In this case, it is clear from the context that the directory U_RINGS is the abbreviated
form of URANUS_RINGS.

7. High level directories that deal with data sets covering a range of planetary science
disciplines or targets shall adhere to the following hierarchy:

A Planetary science directory: PLANET
Planetary body subdirectories: MERCURY, MOON, MARS, VENUS, COMET
Discipline subdirectories: ATMOS, IONOSPHE, MAGNETOS, RING,

SURFACE, and SATELLIT
(Use satellite name if numerous files exist)

8. The recommended SOFTWARE subdirectory naming convention is described in the
Volume Organization and Naming chapter of this document. Either a platform-based
model or an application-based model can be used in defining software subdirectories. In
a platform-based model, the hardware platform, operating system and environment must
be explicitly stated. If there is more than one operating system/environment supported
they are addressed as subdirectories under the hardware directories. When there is only
one, the subdirectory may be promoted to the hardware directory.

For example, if software for the PC for both DOS and Windows were present on the
volume, the directories SOFTWARE/PC/DOS and SOFTWARE/PC/WIN would exist. If
only DOS software were present, the directory would be SOFTWARE/PCDOS.

8-4 Chapter 8. Directory Types and Naming

8.3 Path Formation Standard

The PDS standard for path names is based on Level 2 of the ISO 9660 international standard. A
pathname may consist of up to eight directory levels. Each directory name is limited to 31
characters; the forward-slash character (“/”) is used as the separator in path names. Path names
typically appear on PDS volumes as data in index tables for locating specific files on an archive
volume. They may also appear as values in a limited number of keywords (e.g.,
FILE_SPECIFICATION_NAME, PATH_NAME, and LOGICAL_VOLUME_PATH_NAME).

The following are examples of valid values for the keywords listed above:

TGLI5NXXX/TG15NIXX/TG15N12X identifies the location of the directory TG15N12X
at the third level below the top level of an archive
volume.

DOCUMENT identifies a DOCUMENT directory within the root
directory.

Note: The leading slash is omitted because these are relative paths. The trailing slash is
included so that concatenation of PATH_NAME and FILE_NAME will yield the full file
specification. See the File Specification and Naming chapter of this document for more
information.

Previous PDS standards allowed the use of the DEC VMS syntax for path names. While PDS
support for this format continues to exist, it is recommended that all future volumes use the
UNIX syntax instead.

8.4 Tape Volumes

When magnetic tape is the archive medium, a disk directory structure cannot be used because the
medium does not support multi-level directories. In this case, files must be stored sequentially.

A directory structure for the volume must be designed in any case, so that when the data are
transferred to a medium that supports hierarchical file management they can be placed into an
appropriate directory structure. A DIRECTORY object must be included with each tape volume
within the VOLUME object. This object is then used to describe how the sequential files should
be loaded into a hierarchical structure.

8.5 Exceptions to These Standards

In certain cases, the archive medium used to store the data, the hardware used to produce the data
set, or the software operating on the data may impose restrictions on directory names and
organization. In these cases, consult a PDS data engineer for guidance in designing the archive
volume structure.

Chapter 9. Documents 9-1

Chapter 9. Documents

Supplementary or ancillary reference materials are usually included with archive products to
improve their short- and long-term utility. These documents augment the internal documentation
of the product labels and provide further assistance in understanding the data products and
accompanying materials. Typical archive documents include:

* Flight project documents

* Instrument papers

e Science articles

* Volume information

» Software Interface Specifications (SISs)
* Software user manuals

The PDS criteria for inclusion of a document in the archive are:

1. Would this information be helpful to a data user?
2. Is the material necessary?
3. Is the documentation complete?

In general, the PDS seeks to err on the side of completeness.

Each document to be archived must be prepared and saved in a PDS-compliant format, including
a PDS label. Documents are delivered in the DOCUMENT directory of an archive volume (see
the Volume Organization and Naming chapter of this document).

A flat, human-readable ASCII text version of each document must be included on the volume,
although additional versions may be included in other supported formats at the option of the data
producer. “Flat ASCII text” means the file may contain only the standard, 7-bit printable ASCII
character set, plus the blank character and the carriage-return and linefeed characters as record
delimiters. A file is “human-readable” if it is not encoded and if any special markup tags which
may be included do not significantly interfere with an average user’s ability to read the file. So,
for example, simple HTML files and TeX/LaTeX files with relatively little markup embedded in
the text are generally considered human-readable and may, therefore, be used to satisfy the above
ASCII text version requirement.

Note that the PDS takes the requirement for complete documentation very seriously. Documents
that are essential to the understanding of an archive are considered as important as the data files
themselves. Furthermore, including a document in a PDS archive constitutes publication (or re-
publication) of that document. Consequently, documents prepared for inclusion in an archive are
expected to meet not only the PDS label and format requirements, but also the structural,
grammatical and lexical requirements of a refereed journal submission. Documents submitted for
archiving which contain spelling errors, poor grammar or illogical organization will be rejected
and may ultimately lead to the rejection of the submitted data for lack of adequate
documentation.

9-2 Chapter 9. Documents

9.1 PDS Objects for Documents

PDS labels of documentation files use either the TEXT or DOCUMENT object, as appropriate.
The DOCUMENT obiject is usually used with documentation files found in the DOCUMENT
directory of an archive volume. Files described by a DOCUMENT object may be in any of the
formats described in Section 9.2.

The TEXT object may only be used with ASCII text files containing no markup. TEXT objects
are most often used for small text files occurring anywhere in the archive volume (for example,
the AAREADME.TXT file in the root directory or the DOCINFO.TXT file in the DOCUMENT
directory).

9.1.1 TEXT Objects

TEXT objects are preferred for stand-alone documents with a narrow focus. For example, the
AAREADME.TXT or DOCINFO.TXT files on the archive volume are usually labeled using a
TEXT object. Files described by a TEXT object must:

a) Be plain, flat ASCII files without markup tags (i.e., no HTML or TeX files), encoded
graphics (as in PostScript files), or programmatic structures (i.e., no source code files or
scripting commands); and

b) Have a file extension of “. TXT”

9.1.2 DOCUMENT Objects

DOCUMENT objects are preferred when several versions of the same file are provided or when
there are several component files constituting a single version of the document - for example,
when graphics are included in separate files from the text. Any file labeled using a
DOCUMENT object must:

a) Be in one of the PDS-approved formats listed below; and

b) Use the appropriate object characteristics (listed below) for the DOCUMENT object
parameters and the file extension.

DOCUMENT labels are most often combined detached labels, since attaching them to most of
the formats listed below would make the combined file unusable in its customary environment
(Microsoft Word, for example, cannot recognize “.DOC” files with attached PDS labels).

Chapter 9. Documents 9-3
Format Object Interchange Document Format File Extension
Format

Plain ASCII Text |ASCII_DOCUMENT ASCII TEXT ASC

HTML HTML_DOCUMENT |ASCII HTML HTM or HTML*

TeX TEX_DOCUMENT ASCII TEX TEX

LaTeX LATEX_DOCUMENT |ASCII LATEX TEX

Adobe PDF PDF_DOCUMENT BINARY ADOBE PDF .PDF

MS Word WORD_DOCUMENT |BINARY MICROSOFT WORD .DOC

Rich Text RTF_DOCUMENT BINARY RICH TEXT .RTF

GIF GIF_DOCUMENT BINARY GIF .GIF

JPG JPG_DOCUMENT BINARY JPG JPG

Encapsulated EPS_DOCUMENT BINARY ENCAPSULATED .EPS
Postscript POSTSCRIPT

PNG PNG_DOCUMENT BINARY PNG .PNG

Postscript PS_DOCUMENT BINARY POSTSCRIPT .PS

Tagged Image TIFF_DOCUMENT BINARY TIFF TIF or .TIFF*
File Format

* See chapter File Specification and Naming regarding extensions with more than three
characters.

Example: “MYDOC?” is a documentation file to be included in the DOCUMENT directory of an
archive volume. Two versions will be supplied: a flat ASCII version with the graphics in
separate TIFF files; and a Microsoft Word version with in-line graphics in a single file. In the
PDS label, “MYDOC” will be described using a DOCUMENT object for each different file
format provided. The files included in the directory will be:

MYDOC.ASC
MYDOC.DOC
MYDOCO01.TIF
MYDOCOQ02.TIF
MYDOC.LBL

required ASCII version

optional Microsoft Word version to retain all graphics
optional scanned TIFF version of selected pages

optional scanned TIFF version of other selected pages
PDS label defining DOCUMENT object(s) for these files

arwnhE

Optional versions of the document should have the same file name as the required ASCII version
but with different extensions. Optional versions should be defined as additional DOCUMENT
objects in the single PDS label; the name of the required ASCII file should be indicated in the
text of the DESCRIPTION keyword.

9.2 Document Format Details

9.2.1 Flat ASCII Text

Line Length and Delimiters - PDS recommends plain text files have line length restricted to 78
characters or fewer, to accommodate printing and display on standard devices. Each line must be
terminated by the two-character carriage-return/linefeed sequence (ASCII decimal character
codes 13 and 10, respectively).

9-4 Chapter 9. Documents

Page Length and Breaks - Block paragraph style is preferred, with paragraphs being separated
by at least one blank line. The form feed character (ASCII decimal code 12) may be used to
indicate page breaks, in which case pages should contain no more than 60 lines of text. A
formfeed character should be inserted immediately after the END statement line of an attached
PDS label in these files.

9.2.2 ASCII Text Containing Markup Language

Line Length and Delimiters - The 78-character line length recommendation is dropped for
these files. Notwithstanding, the lines must be delimited by the carriage return/linefeed character
combination.

Page Length and Breaks - Page breaks are controlled by the markup in these files.
Consequently, there are no specific page length recommendations.

Note: ASCII files containing extensive markup may not pass the “human-readable” test. Also,
some automatic converters producing, for example, HTML files that might be expected to
be human-readable in fact add so many additional marks and notations that those files
also fail the “human-readable” test. Consult a PDS data engineer for help in determining
whether a particular file can be considered “human-readable” for archive purposes.

9.2.2.1 Hyper-Text Markup Language (HTML) Files

PDS archive products must adhere to Version 3.2 of the HTML language, a standard generalized
markup language (SGML) conforming to the ISO 8879 standard. All files are subject to
validation against the HTML 3.2 SGML Declaration and the HTML Document Type Definition.

Note: Constructs not defined in the HTML 3.2 standard (e.g., FRAME, STYLE, SCRIPT, and
FONT FACE tags) are not allowed in PDS documentation files.

9.2.2.2 Location of Files

PDS strongly recommends that targets of all HTML links be present on the archive volume. In
cases where external links are provided, the link should lead to supplementary information that is
not essential to understanding or use of the archival data.

PDS recommends that all files comprising an HTML document or series of documents be located
in a single directory. However, locating ancillary files (e.g., images, common files) in
subdirectories may be required under certain circumstances (e.g., to avoid conflicts in file names
or to minimize replication of common files).

9.2.2.3 Discouraged HTML 3.2 Capabilities
Although the APPLET tag is advertised to be supported by all Java enabled browsers, not all

Chapter 9. Documents 9-5

applets execute on all browsers on all platforms. Further, some browsers require that the user
explicitly enable use of Java applets before the applet will execute. Consequently, applets are
permitted in PDS document files only when the information they convey is not essential to
understanding or use of the archival data.

Use of the TAB character is permitted but strongly discouraged because of variations in
implementation among browsers and resulting misalignments within documents.

Use of animated GIF image files is discouraged.

9.2.3 Non-ASCII Formats

Wherever possible the specific encoding and version level information should be included in the
label for all non-ASCII documents. The ENCODING_TYPE keyword is used to indicate the
base encoding type (e.g., PostScript, GIF, etc.), while the specific version information should be
included in the text of the DESCRIPTION keyword. See the PSDD for a list of standard
encoding types. Additional types may be added at the discretion of the PDS data engineer.

9.2.4 Validation

Documentation files prepared to accompany a data set or data set collection must be validated.
Validation consists of checking to ensure that the files can be copied or transmitted
electronically, and can be read or printed by their target text-processing program.
Documentation files should be spell-checked prior to being submitted to PDS for validation.

9.3 Examples

9.3.1 Simple Example of Attached label (Plain ASCII Text)

The following label could be attached to a plain ASCII text file describing the content and format
of Mars Pathfinder Imager Experiment Data Records.

PDS_VERSION_ID = PDS3

RECORD_TYPE = STREAM

OBJECT = TEXT

NOTE = "Mars Pathfinder Imager Experiment Data Record SIS"
PUBLICATION DATE = 1998-06-30

END_OBJECT = TEXT

END

9.3.2 Complex Example of Detached Label (Two Document Versions)

If the data producer chose to provide the same document in both plain ASCII text and as a
Microsoft Word document, the detached label would have the name EDRSIS.LBL and would be
as follows:

PDS_VERSION ID
RECORD TYPE

"ASCII_DOCUMENT
“WORD_DOCUMENT

OBJECT
DOCUMENT NAME
PUBLICATION_DATE
DOCUMENT TOPIC_TYPE
INTERCHANGE_FORMAT
DOCUMENT FORMAT
DESCRIPTION

END_OBJECT

OBJECT
DOCUMENT NAME
PUBLICATION_DATE
DOCUMENT TOPIC_TYPE
INTERCHANGE _FORMAT
DOCUMENT FORMAT
DESCRIPTION

END_OBJECT
END

Chapter 9. Documents

PDS3
UNDEFINED
"EDRSIS.ASC"
"EDRSIS.DOC"

ASCII_DOCUMENT

"Mars Pathfinder Imager Experiment Data Record"
1998-06-30

"DATA PRODUCT SIS"

ASCIT

TEXT

"This document contains a textual description of
the VICAR and PDS formatted Mars Pathfinder IMP
Experiment Data Records. This is the ASCII text
version of the document required by PDS."
ASCII_DOCUMENT

WORD_DOCUMENT

"Mars Pathfinder Imager Experiment Data Record"
1998-06-30

"DATA PRODUCT SIS"

= BINARY

"MICROSOFT WORD"

"This document contains a textual description of
the VICAR and PDS formatted Mars Pathfinder IMP
Experiment Data Records. The document was
created using Microsoft Word 6.0.1 for the
Macintosh."

WORD_DOCUMENT

9.3.3 Complex Example of Detached Label (Documents Plus Graphics)

The following label (EDRSIS.LBL) illustrates the use of an HTML document as the required
ASCII document. The same document is also included as a PDF file, and four PNG images are
included separately.

PDS_VERSION ID
RECORD TYPE
~HTML_DOCUMENT
“PDF_DOCUMENT
“PNG_DOCUMENT

OBJECT
DOCUMENT NAME

PUBLICATION_DATE

DOCUMENT_ TOPIC_TYPE
INTERCHANGE_FORMAT

DOCUMENT FORMAT
DESCRIPTION

END_OBJECT

= PDS3

UNDEFINED

"EDRSIS.HTM"

"EDRSIS.PDF"

= ("FIGl1.PNG","FIG2.PNG","TAB1.PNG","TAB2.PNG")

= HTML_DOCUMENT

= "Mars Pathfinder Imager Experiment Data
Record"

= 1998-06-30

"DATA PRODUCT SIS"

ASCIT

HTML

= "This document contains a description
of the VICAR and PDS formatted Mars
Pathfinder IMP Experiment Data Records.
is an HTML version of the document."

= HTML_DOCUMENT

This

Chapter 9. Documents

OBJECT

DOCUMENT NAME

PUBLICATION_DATE
DOCUMENT_ TOPIC_TYPE
ENCODING_TYPE

PDF_DOCUMENT

"Mars Pathfinder Imager Experiment Data
Record"

1998-06-30

"DATA PRODUCT SIS"

"PDS-ADOBE-1.1"

9-7

INTERCHANGE_FORMAT = BINARY
DOCUMENT FORMAT = "ADOBE PDF"
DESCRIPTION = "This document contains a description
of the VICAR and PDS formatted Mars
Pathfinder IMP Experiment Data Records. This
is a PDF version of the document."
END_OBJECT = PDF_DOCUMENT
OBJECT = PNG_DOCUMENT

DOCUMENT NAME

"Mars Pathfinder Imager Experiment Data
Record"

PUBLICATION_DATE = 1998-06-30
DOCUMENT_ TOPIC_TYPE = "DATA PRODUCT SIS"
FILES =4

ENCODING_TYPE = "PNG1.0"
INTERCHANGE_FORMAT = BINARY

DOCUMENT FORMAT = PNG

DESCRIPTION

"This document is a PNG representation of two

figures and two tables from the Mars

Pathfinder IMP Experiment Data Record SIS."
END_OBJECT = PNG_DOCUMENT
END

(This page intentionally left blank.)

Chapter 9. Documents

Chapter 10. File Specification and Naming 10-1

Chapter 10. File Specification and Naming

The File Specification and Naming standard defines the PDS conventions for forming file
specifications and names. This chapter is based on levels 1 and 2 of the international standard
ISO 9660, “Information Processing - Volume and File Structure of CD-ROM for Information
Interchange.”

1SO 9660 Level 1 versus 1SO 9660 Level 2

PDS recommends that archive products adhere to the ISO 9660 Level 1 specification.
Specifically, CD-ROM volumes that are expected to be widely distributed should use file
identifiers consisting of a maximum of eight characters in the base name and three characters in
the extension (i.e., “8.3” file names).

When there are compelling reasons to relax the 8.3 file name standard, the 1ISO 9660 Level 2

specification with respect to file names may be used, subject to the restrictions listed in Section
10.1.2.

10.1 File Specification Standards

A file specification consists of the following elements:
1. A complete directory path name (as discussed in the Directory Types and Naming chapter
of this document)
2. A file name (including extension)
The PDS has adopted the UNIX/POSIX forward slash character (/) as the directory separator for
use in path names. Directory path name formation is discussed further in the Directory Types
and Naming chapter of this document.

The following is an example of a simple file specification. The file specification identifies the
location of the file relative to the root of a volume, including the directory path name.

File Name: TG15N122.1IMG
File Specification: TGI5NXXX/TG15N1IXX/TG15N12X/TG15N122.IMG
Do not use path or file names that correspond to operating system specific names, such as:

AUX COM1 CON LPT1 NUL PRN

10-2 Chapter 10. File Specification and Naming

10.1.1 1SO 9660 Level 1 Specification

A file name consists of a base name and an extension, separated by a full stop character (*.”).
Under 1SO 9660 Level 1, the length of the base name may not exceed eight characters and the
extension may not exceed three characters. In addition, a version number consisting of a
semicolon and an integer must follow the file identifier. The base name and extension may only
contain characters from the following set: the upper case alphanumeric characters (A- Z, 0-9)
and the underscore (*_"). Collectively, these requirements are often referred to as the “8.3” (“8
dot 3”) file naming convention. These limitations exist primarily to accommodate older
computer systems that cannot handle longer file names.

Preferred format: BASENAME (1..8 characters) "." EXTENSION (3 characters)
Allowable format: BASENAME (1..8 characters) "." EXTENSION (1..3 characters)

Actual format
on archive medium: BASENAME (1..8 characters) "." EXTENSION (1..3 characters) ";1"

10.1.2 1SO 9660 Level 2 Specification

The PDS use of ISO 9660 Level 2 file names adheres to all the above restrictions, with the
exception that the base name may be up to 27 characters long (total file name length not to
exceed 31 characters). Thus, this format is sometimes referred to as the “27.3” format.

Note: In rare cases the following variations are allowed on the 27.3 format file name:

* The file name portion may be up to 29 characters long; or
* The extension may be up to 29 characters long.

In no case, however, may the total file name length, including the “.”, exceed 31 characters.
Preferred format: BASENAME (1..27 characters) "." EXTENSION (3 characters)
Allowable format: BASENAME (1..29 characters) "." EXTENSION (1..29 characters)

Actual format
on archive medium: BASENAME (1..29 characters) "." EXTENSION (1..29 characters) ";1"

Note that only the file and directory name specifications for Level 2 may be used in PDS archive
volumes. All other Level 2 extensions are prohibited.

10.2 Reserved Directory Names, File Names and Extensions

A number of file names, directory names and file extensions are reserved for files that are
required in PDS archive volumes under various circumstances. These reserved names and
extensions are listed in the following sections for easy reference. For details concerning what
directories and files are required where and when, see the indicated chapter.

Chapter 10. File Specification and Naming 10-3

10.2.1 Reserved Directory Names

The following directory names are reserved. The contents of these directories are described in
Chapter 19, Volume Organization and Naming.

BROWSE
CALIB
CATALOG
DATA
DOCUMENT
EXTRAS
GAZETTER
GEOMETRY
INDEX
LABEL
SOFTWARE

10.2.2 Reserved File Names

The following file names are reserved. Not all of them are required in all cases. For a complete
description of what files are required where and when, see Chapter 19, Volume Organization and
Naming.

AAREADME.TXT GAZINFO.TXT PERSON.CAT
BROWINFO.TXT GEOMINFO.TXT REF.CAT
CALINFO.TXT INDEX.TAB SGIINFO.TXT
CATALOG.CAT INDXINFO.TXT SOFTINFO.TXT
CATINFO.TXT INST.CAT SUNINFO.TXT
CUMINDEX.TAB INSTHOST.CAT VOLDESC.CAT
DATASET.CAT LABINFO.TXT VOLDESC.SFD
DOCINFO.TXT MACINFO.TXT VOLINFO.TXT
ERRATA.TXT MISSION.CAT ZIPINFO.TXT
EXTRINFO.TXT PCINFO.TXT

10.2.3 Reserved Extensions

The following file extensions are reserved. A brief description is provided in the table below.
Additional detail is contained in Chapter 19, Volume Organization and Naming, and Chapter 9,
Documentation Standard.

10-4 Chapter 10. File Specification and Naming

Extension Description
(use with files of this type)

ASC Plain ASCII documentation files

BC SPICE Binary format CK (pointing) files

BSP SPICE Binary format SPK (ephemeris) files
CAT Catalog object(s)

CSV SPREADSHEET object(s)

DAT Binary files (other than images)

DLL Dynamic Link Library
DOC Microsoft Word document

EPS Encapsulated Postscript

EXE Application or Executable

FMT Include file for describing data object (meta data)
GIF GIF image

HTM or HTML | HTML document

IBG Browse image data

IMG Image data

IMQ Image data that have been compressed (Not for use with

JPEG 2000 compressed data.)

JP2 JPEG 2000 (JP2) formatted image

JPG JPEG image

LBL Detached label for describing data object

LIB Library of object files
MAK Makefile for compiling / linking application or executable
OBJ Obiject file

PDF Adobe PDF document

PNG Portable Network Graphics

PS Postscript
QUB Spectral (or other) image QUBEs

RTF Rich Text document
TAB Tabular data, including ASCIlI TABLE objects with
detached labels

TEX TeX or LaTeX document

Tl SPICE Text IK (instrument parameters) files

TIF or TIFF | Tagged Image File Format documents

TLS SPICE Leap seconds kernel files

TPC SPICE Physical and cartographic constants kernel files
TSC SPICE Spacecraft clock coefficients kernel files
TXT Plain text documentation files

XC SPICE Transfer format CK (pointing) files
XES SPICE E-kernel files
XSP SPICE Transfer format SPK (ephemeris) files
ZIP Zip-compressed files within PDS

Table 10.1 — Reserved File Extensions

Chapter 10. File Specification and Naming 10-5

10.3 Guidelines for Naming Sequential Files
In cases where file names are constructed from a time tag or sequential data object identifier, the
following forms are suggested (but not required):

Pnnnnnnn.EXT

where “.EXT” is the file extension (see above) and P is a character indicating:

nnnnnnn is a clock count value (e.g., “C3345678.IMG”)

nnnnnnn is a time value (e.g., “T870315.TAB”)

nnnnnnn is a frame ID or an image ID (e.g., “F242A03.IMG”)
nnnnnnn is a numeric file identification number (e.g., “NO03.TAB”)

ZT-H0

10-6 Chapter 10. File Specification and Naming

(This page intentionally left blank.)

Chapter 11. Media Formats for Data Submission and Archive 11-1

Chapter 11. Media Formats for Data
Submission and Archive

This standard identifies the physical media formats to be used for data submission or delivery to
the PDS or its science nodes. The PDS expects flight projects to deliver all archive products on
magnetic or optical media. Electronic delivery of modest volumes of special science data
products may be negotiated with the science nodes.

Archive Planning - During archive planning, the data producer and PDS will determine the
medium (or media) to use for data submission and archiving. This standard lists the media that
are most commonly used for submitting data to and subsequently archiving data with the PDS.
Delivery of data on media other than those listed here may be negotiated with the PDS on a case-
by-case basis.

Physical Media for Archive - For archival products only media that conform to the appropriate
International Standards Organization (1SO) standard for physical and logical recording formats
may be used.

1. The preferred data delivery medium is the Compact Disk (CD-ROM or CD-Recordable)
produced in 1ISO 9660 format, using Interchange Level 1, subject to the restrictions listed
in Section 10.1.1.

2. Compact Disks may be produced in ISO 9660 format using Interchange Level 2, subject
to the restrictions listed in Section 10.1.2.

3. Digital Versatile Disk (DVD-ROM or DVD-R) should be produced in UDF-Bridge
format (Universal Disc Format) with 1SO 9660 Level 1 or Level 2 compatibility.

Because of hardware compatibility and long-term stability issues, the use of 12-inch Write Once
Read Many (WORM) disk, 8-mm Exabyte tape, 4-mm DAT tape, Bernoulli Disks, Zip disks,

Syquest disks and Jaz disks is not recommended for archival use. WORM disk formats are
proprietary to the specific vender hardware. Helical scan tape (8-mm or 4-mm) is prone to
catastrophic read errors. Bernoulli, Zip, Jaz, Syquest and other vendor-specific storage media are
prone to obsolescence.

11.1 CD-ROM Recommendations

11.1.1 Use of Variant Formats

The use of Extended Attribute Records (XARs), Rock Ridge Extensions or Macintosh Hybrid
Disk Extensions on archival CD-ROMs is discouraged because these extensions can cause errors
with CD-ROM drivers on some systems.

11-2 Chapter 11. Media Formats for Data Submission and Archive

11.1.2 Premastering Recommendation

PDS recommends that CD-ROMs be premastered using a single-session, single-track format.
Other formats have been found to be incompatible with some readers.

11.2 DVD Recommendations

11.2.1 Use of Variant Formats

The official volume structure for DVD media is UDF. DVD volumes should not be produced
using 1SO 9660 only. While current operating systems support 1ISO 9660 on DVD volumes, there
IS no guarantee that future operating system upgrades, set-top boxes or other new devices will
continue to support 1ISO 9660 formatted DVD volumes.

11.2.2 Premastering Recommendation

PDS recommends that DVD-ROMSs or DVD-Rs be premastered using a single-session, single-
track format using the UDF-Bridge format.

11.2.3 Recommended DVD Formats
There are currently three "variants" of DVD media:

* DVD-5 -single sided, single layer (4.7 GB)
* DVD-9 -single sided, double layer (8.5 GB)
* DVD-10 - double sided, single layer (9.4 GB)

Currently, only the DVD-5 is approved by the PDS for archiving data. A waiver may be
obtained for using the DVVD-9 format if the archive consists of very large quantities of data (e.g.,
cost considerations may warrant using this format). The DVD-10 format is not recommended.

11.3 Packaging Software Files on a CD or DVD

The ISO 9660 Level 1 standard requires all pathnames and directory names to be in uppercase, and
to be limited to eight characters with a three-character file extension for file names. In some cases it
may be desirable to include software packages on an ISO 9660 Level 1 archive product that do not
conform to these naming standards. The recommended method for packaging software is to use a
“Zip” utility in accordance with the PDS standards for archiving data using Zip compression. See
the Zip Compression chapter for more information.

11.4 Software Packaging Under Previous Versions of the Standard

Under previous versions of the Standards — prior to the adoption of the Zip standard (see the Zip
Compression chapter) — archive products that included software specifically intended for the
Mac and SUN operating systems used the following conventions:

Chapter 11. Media Formats for Data Submission and Archive 11-3

1. Mac Software

In this case the Mac files must be prepared in a particular format, as other platforms do
not recognize the resource and data fork files that come with Mac applications. (For an
example of properly formatted Mac software, see the NIHIMAGE software on the
Magellan GxDR and Clementine EDR CD-ROMSs.) The Mac utility “STUFFIT” is used
to prepare the files by compressing them and encoding them using the BINHEX utility.
Users will also need this STUFFIT utility in order to unpack the software for use. The
procedure and software requirements should be described in a text file included on the
CD-ROM (in the appropriate SOFTWARE/DOCUMENT subdirectory — see the Volume
Organization and Naming chapter in this document).

Example — Text Documenting HQX Files

Macintosh Software

This directory contains software that can be used to display the GXDR
images on a Macintosh II computer with an 8-bit color display.

NOTE: Because of the way this CD-ROM was produced, it was not possible
to record this display program as a Macintosh executable file. Anyone
who is unfamiliar with the Macintosh STUFFIT utility should contact the
PDS operator, 818-306-6026, SPAN address JPLPDS::PDS_OPERATOR, INTERNET
address PDS_OPERATOR@ JPLPDS.JPL.NASA.GOV

The file IMAGE.HQX contains the NIH Image program, along with several
ancillary files and documentation in Microsoft WORD format. It was
written by Wayne Rasband of the National Institutes of Health. The
program can be used to display any of the image files on the GXDR
CD-ROM disks.

The Image executable and manual are stored in BINHEX format, and the
utility STUFFIT or UNSTUFFIT must be used to: 1) decode the BINHEX
file IMAGE.HQX into IMAGE.SIT, using the 'DECODE BINHEX FILE...' option
in the Other menu; and 2) use 'OPEN ARCHIVE' from the File menu to
extract Image 1.40 from the STUFFIT archive file. There are also
several other files in the archive file which should be unstuffed and
kept together in the same folder as the Image executable is stored.

The STUFFIT software is distributed as shareware. STUFFIT, Version
1.5.1, is available by contacting:

Raymond Lau MacNET:RayLau Usenet:raylau@dasysl.UUCP
100-04 70 Ave. GEnie:RayLau

Forest Hills, N.Y. 11375-5133 CIS:76174,2617

United States of America. Delphi:RaymondLau

Alternatively, STUFFIT CLASSIC, Version 1.6, is available by contacting:

Aladdin Systems, Inc.
Deer Park Center

Suite 23A-171

Aptos, CA 95003

United States of America

11-4 Chapter 11. Media Formats for Data Submission and Archive

2. SUN Software

The problem in this case is preserving the SUN file names, since case is significant in file
names on that platform. Since the ISO standard requires all file and directory names to be
uppercase, a disk premastered as an ISO CD may encounter problems in the case-
sensitive SUN environment. Specifically, some CD readers mounted on SUN systems
show file names as uppercase regardless of the format prior to mastering. If build routines
(“make” files, for example) refer to lowercase file names, the corresponding files will not
be found.

A method for dealing with this situation is to store the entire original directory structure
and contents in a compressed, encoded archive (a compressed “tar” file, for example),
and document the procedures and utilities needed to restore the files in the appropriate
file. This is equivalent to the STUFFIT approach described above for Mac software.

Chapter 12. Object Description Language Specification and Usage 12-1

Chapter 12. Object Description Language
Specification and Usage

The following provides a complete specification for Object Description Language (ODL), the
language used to encode data labels for the Planetary Data System (PDS) and other NASA data
systems. This standard contains a formal definition of the grammar semantics of the language.
PDS specific implementation notes and standards are referenced in separate sections.

12.1 About the ODL Specification

This standard describes Version 2.1 of ODL. Version 2.1 of ODL supersedes Versions 0 and 1 of
the language, which were used previously by the PDS and other groups. For the most part, ODL
Version 2.1 is backwardly compatible with previous versions of ODL. There are, however, some
features found in ODL Versions 0 and 1 that have been removed from or changed within Version
2. The differences between ODL versions are described in Section 12.7.

Following is a sample ODL data label describing a file and its contents:

/* File Format and Length */
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 800
FILE_RECORDS = 860

/* Pointer to First Record of Major Objects in File */

~IMAGE = 40
AIMAGE_HISTOGRAM = 840
AANCILLARY_TABLE = 842
/* Image Description */
SPACECRAFT_NAME VOYAGER_ 2
TARGET_NAME I0
IMAGE_ID "0514J32-00"
IMAGE_TIME 1979-07-08T05:19:11%

INSTRUMENT NAME
EXPOSURE_DURATION
NOTE

NARROW_ANGLE_CAMERA

1.9200 <SECONDS>

"Routine multispectral longitude
coverage, 1 of 7 frames"

/* Description of the Objects Contained in the File */

OBJECT IMAGE
LINES 800
LINE_SAMPLES 800

SAMPLE_TYPE
SAMPLE_BITS

UNSIGNED_INTEGER
8

END_OBJECT IMAGE

OBJECT = IMAGE_HISTOGRAM
ITEMS = 25

ITEM_TYPE = INTEGER
ITEM_BITS = 32

END_OBJECT = IMAGE_HISTOGRAM

OBJECT = ANCILLARY TABLE
" STRUCTURE = "TABLE.FMT"
END_OBJECT = ANCILLARY TABLE

END

12-2 Chapter 12. Object Description Language Specification and Usage

12.1.1 Implementing ODL

Notes to implementers of software to read and write ODL-encoded data descriptions appear
throughout the following sections. These notes deal with issues beyond language syntax and
semantics, but are addressed to assure that software for reading and writing ODL will be
uniform. The PDS, which is the major user of ODL-encoded data labels, has imposed additional
implementation requirements for software used within the PDS. These PDS requirements are
discussed below where appropriate.

12.1.1.1 Language Subsets

Implementers are allowed to develop software to read or write subsets of the ODL. Specifically,
software developers may opt to:

« Eliminate support for the GROUP statement (see Section 12.4.5.2 for additional
information)

+ Not support pointer statements

« Not support certain types of data values

For every syntactic element supported by an implementation, the corresponding semantics, as
spelled out in this chapter, must be fully supported. Software developers should be careful to
assure that language features will not be needed for their particular applications before
eliminating them. Documentation on label reading/writing software should clearly indicate
whether or not the software supports the entire ODL specification and, if not, should clearly
indicate the features not supported.

12.1.1.2 Language Supersets

Software for writing ODL must not provide or allow lexical or syntactic elements over and
above those described below. With the exception of the PVL-specific extensions below, software
for reading ODL must not provide or allow any extensions to the language.

12.1.1.3 PDS Implementation of PVL-Specific Extensions

PDS implementation of software for reading ODL may, in some cases, provide handling of
lexical elements that are included in the CCSDS specification of the Parameter Value Language
(PVL), which is a superset of ODL. Extensions handled by such software include:

* BEGIN_OBJECT as a synonym for the reserved word OBJECT
* BEGIN_GROUP as a synonym for the reserved word GROUP
* Use of the semicolon (;) as a statement terminator

These lexical elements are not supported by software that writes the ODL subset. They must
either be removed (in the case of semicolons) or replaced (in the case of the BEGIN_OBJECT
and BEGIN_GROUP synonyms) upon output.

Chapter 12. Object Description Language Specification and Usage 12-3

12.1.2 Notation
The formal description of the ODL grammar is given below in Backus-Naur Form (BNF).
Language elements are defined using rules of the following form:

defined_element ::= definition

where the definition is composed from the following components:

1. Lower case words, some containing underscores, are used to denote syntactic
categories. For example:

units_expression

Whenever the name of a syntactic category is used outside of the formal BNF
specification, spaces take the place of underscores (for example, units expression).

2. Boldface type is used to denote reserved identifiers. For example:
object
Special characters used as syntactic elements also appear in boldface type.

3. Square brackets enclose optional elements. Elements within brackets occur zero or
one times.

4. Square brackets followed immediately by an asterisk or plus sign specify repeated
elements. In the case of an asterisk, the elements in brackets may appear zero, one, or
more times. In the case of a plus sign, the elements in brackets must appear at least
once. The repetitions occur from left to right.

5. A vertical bar separates alternative elements.

6. If the name of any syntactic category starts with an italicized part, it is equivalent to
the category name without the italicized part. The italicized part is intended to convey
some semantic information. For example, both object_identifier and units_identifier
are equivalent to identifier; object_identifier is used in places where the name of an
object is required and units_identifier is used where the name of some unit of
measurement is expected.

12.2 Character Set

The character set of ODL is the International Standards Organization’s ISO 646 character set.
The U.S. version of the ISO 646 character set is ASCII; the ASCII graphical symbols are used
throughout this document. In other countries certain symbols have a different graphical
representation.

12-4 Chapter 12. Object Description Language Specification and Usage

The ODL character set is partitioned into letters, digits, special characters, spacing characters,
format effectors and other characters:

character :: = letter | digit | special_character |
spacing_character | format_effector |
other_character

12.2.1 ODL Character Set - Letters

The letters are the uppercase letters A - Z and the lowercase letters a - z. ODL language elements
are not case sensitive. Thus the following identifiers are equivalent:

* IMAGE_NUMBER
* Image_Number
* image_number

Case is significant inside of literal text strings, i.e., string “abc” is not the same as the string
“ABC".

12.2.2 ODL Character Set - Digits
The digitsare 0,1, 2,3,4,5,6,7,8, 9.

12.2.3 ODL Character Set — Special Characters
The special characters used in ODL are:

Symbol Name Usage

= Equals The equals sign equates an attribute or pointer to a value.
{} Braces Braces enclose an unordered set of values.

@) Parentheses Parentheses enclose an ordered sequence of values.

+ Plus The plus sign indicates a positive numeric value.

- Minus The minus sign indicates a negative numeric value.

<> Angle brackets Angle brackets enclose a units expression associated with a

numeric value.
Period The period is the decimal place in real numbers.

" Quotation Marks Quotation marks denote the beginning and end of a text string
value. Case is significant within the quotes of a text string.

’ Apostrophe Apostrophes mark the beginning and end of a symbol value.
Case is not significant within delimiting apostrophes (a.k.a.
“single quotes™).

Chapter 12. Object Description Language Specification and Usage 12-5

_ Underscore The underscore separates words within an identifier.
: Comma The comma separates individual values in a set or sequence.
/ Slant The slant character indicates division in units expressions. The

slant is also part of the comment delimiter.

* Asterisk The asterisk indicates multiplication in units expressions. Two
asterisks in a row indicate exponentiation in units expressions.
The asterisk is also part of the comment delimiter.

Colon The colon is used in attribute assignment statements to separate
a namespace_identifier from an attribute_identifier (see Section
12.4.2).

The colon separates hours, minutes and seconds within a time
value.

Crosshatch Also known as “the pound sign”, this symbol delimits the
digits in an integer number value expressed in notation other
than base-10.

& Ampersand The ampersand denotes continuation of a statement onto
another line.
A Circumflex The circumflex (or caret) indicates that a value is to be

interpreted as a pointer.

12.2.4 ODL Character Set — Spacing Characters

Two characters, called the spacing characters, separate lexical elements of the language and can
be used to format characters on a line:

Space
Horizontal Tabulation

12.2.5 ODL Character Set — Format Effectors

The following ISO characters are format effectors, used to separate ODL encoded statements
into lines:

Carriage Return
Line Feed

Form Feed
Vertical Tabulation

The spacing characters and format effectors are discussed further in section 12.4.1 below. There
are other characters in the 1SO 646 character set that are not required to write ODL statements
and labels. These characters may, however, appear within text strings and quoted symbolic
literals:

12-6 Chapter 12. Object Description Language Specification and Usage

1$%;2@[] |

12.2.6 ODL Character Set — Control Characters

The category of other characters also includes the ASCII control characters except for horizontal
tabulation, carriage return, line feed, form feed and vertical tabulation (e.qg., the control
characters that serve as spacing characters or format effectors). As with the printing characters in
this category, the control characters in this category can appear within a text string. The handling
of control characters within text strings and symbolic literals is discussed in Section 12.3.3
below.

12.3 Lexical Elements

This section describes the lexical elements of ODL. Lexical elements are the basic building
blocks of the ODL. Statements in the language are composed by stringing lexical elements
together according to the grammatical rules presented in Section 12.4. The lexical elements of
ODL are:

* Numbers

* Dates and Times
* Strings

e |dentifiers

* Special symbols used for operators, etc.

There is no inherent limit on the length of any lexical element. However, software for reading
and writing ODL may impose limitations on the length of text strings, symbol strings and
identifiers. It is recommended that at least 32 characters be allowed for symbol strings and
identifiers and at least 400 characters for text strings.

12.3.1 Numbers

ODL can represent both integer numbers and real numbers. Integer numbers are usually
represented in decimal notation (*123”), but ODL also provides for integer values in other
number bases (for example, “2#1111011#” is the binary representation of the decimal integer
“123”). Real numbers can be represented in simple decimal notation (“123.4”) or in scientific
notation (i.e., with a base 10 exponent: “1.234E2”).

12.3.1.1 Integer Numbers In Decimal Notation
An integer number in decimal notation consists of a string of digits optionally preceded by a
number sign. A number without an explicit sign is always taken as positive.

integer :: = [sign] unsigned_integer
unsigned_integer :: = [digit] +

Chapter 12. Object Description Language Specification and Usage 12-7
sign = +| -

Examples — Decimal Integers

0

123
+440
-150000

12.3.1.2 Integer Numbers In Based Notation

An integer number in based notation specifies the number base explicitly. The number base must
be in the range 2 to 16, which allows for representations in the most popular number bases,
including binary (base 2), octal (base 8) and hexadecimal (base 16). In general, for a number
base X the digits 0 to X-1 are used. For example, in octal (base 8) the digits O to 7 are allowed. If
X is greater than 10, then the letters A, B, C, D, E, F (or their lower case counterparts) are used
as needed for the additional digits.

A based integer may optionally include a number sign. A number without an explicit sign is
always taken as positive.

based_integer :: = radix # [sign] [extended_digit] + #
extended_digit :: = digit | letter
radix :: = unsigned_integer

Examples — Based Integers

2#1001011#
8#113#
10#75#
16#4B#

16#+4B#
16#-4B#

All but the last example above are equivalent to the decimal integer number 75. The final
example is the hexadecimal representation of -75 decimal.

12.3.1.3 Real Numbers

Real numbers may be represented in floating-point notation (*123.4”) or in scientific notation
with a base 10 exponent (“1.234E2”). A real number may optionally include a sign. Unsigned
numbers are always taken as positive.

real :: = [sign] unscaled_real | [sign] scaled_real
unscaled_real :: = unsigned_integer. [unsigned_integer] | .unsigned_integer

12-8 Chapter 12. Object Description Language Specification and Usage

scaled_real :: = unscaled_real exponent
exponent :: = E integer | e integer

Note that the letter ‘E’ in the exponent of a real number may appear in either upper or lower
case.

Examples — Real Numbers

0.0
123.
+1234.56
-.9981
-1.E-3
314591

12.3.2 Dates and Times

ODL includes lexical elements for representing dates and times. The formats for dates and times
are a subset of the formats defined by the International Standards Organization draft standard
ISO/DIS 8601. (For information regarding PDS specific use of dates and times, see the
Date/Time chapter in this document.)

12.3.2.1 Date and Time Values
Date and time scalar values represent a date, a time, or a combination of date and time:

date_time_value :: = date | time | date_time

The following rules apply to date values:

* The year must be Anno Domini. PDS requires a 4-digit year format be used (i.e.,
#2000”, not “00”).

* Month must be a number between 1 and 12.

* Day of month must be a number in the range 1 to 31, as appropriate for the particular
month and year.

* Day of year must be in the range 1 to 365, or 366 in a leap year.

The following rules apply to time values:
* Hours must be in the range 0 to 23.
* Minutes must be in the range 0 to 59.
* Seconds, if specified, must be greater than or equal to 0 and less than 60.

The following rules apply to zone offsets within zoned time values:

* Hours must be in the range -12 to + 12 (the sign is mandatory).

Chapter 12. Object Description Language Specification and Usage 12-9

* Minutes, if specified, must be in the range 0 to 59.

12.3.2.2 Implementation of Dates and Times

All ODL reading/writing software shall be able to handle any date within the 20th and 21st
centuries. Software for writing ODL must always output full four-digit year numbers so that
labels will be valid across century boundaries.

Times in ODL may be specified with unlimited precision, but the actual precision with which
times will be handled by label reading/writing software is determined by the software
implementers, based upon limitations of the hardware on which the software is implemented.
Developers of label reading/writing software should document the precision to which times can
be represented.

Software for writing ODL must not output local time values, since a label may be read in a time
zone other than where it was written. Use either the UTC or zoned time format instead.

12.3.2.3 PDS Implementation of Dates and Times

PDS software for reading ODL labels interprets label times as UTC times. On output, a “Z” will
be appended to label times.

12.3.2.4 Dates

Dates can be represented in two formats: as year and day of year; or as year, month and day of
month.

date ;= year_doy | year_month_day
year_doy .. = year-doy

year_month_day .. = year-month-day

year .2 = unsigned_integer

month . = unsigned_integer

day .2 = unsigned_integer

doy .. = unsigned_integer

Examples — Dates

1990-07-04
1990-158
2001-001

12.3.2.5 Times

Times are represented as hours, minutes and (optionally) seconds using a 24-hour clock. Times
may be specified in Universal Time Coordinated (UTC) by following the time with the letter Z
(for Zulu, a common designator for Greenwich Mean Time). Alternately, the time may be

12-10 Chapter 12. Object Description Language Specification and Usage

referenced to any time zone by following the time with a number that specifies the offset from

UTC. Most time zones are an integral number of hours from Greenwich, but some are different
by some non-integral time; both can be represented in the ODL. A time that is not followed by
either the Zulu indicator or a time zone offset is assumed to be a local time.

time :: = local_time | utc_time | zoned_time
local time .2 = hour_min_sec

utc_time > =hour_min_sec Z

zoned_time :: =hour_min_sec zone_offset
hour_min_sec :: = hour: minute [:second]
zone_offset :: =sign hour [: minute]

hour . = unsigned_integer

minute .. = unsigned_integer

second .2 = unsigned_integer | unscaled_real

Note that either an integral or a fractional number of seconds can be specified in a time value.

Examples — Times

12:00
15:24:127
01:10:39.4575+07 (time offset of 7 hours from UTC)

12.3.2.5.1 Combining Date and Time

A date and time can be specified together using the format below. Either of the two date formats
can be combined with any time format - UTC, zoned or local.

date_time::=date T time
The letter T separating the date from the time may be specified in either upper or lower case.
Note that, because this is a lexical element, spaces may not appear within a date, within a time or
before or after the letter T.
Examples — Date/Times

1990-07-04T12:00

1990-158T15:24:127
2001-001T01:10:39.457591+7

12.3.3 Strings
There are two kinds of string elements in ODL.: text strings and symbol strings.

Chapter 12. Object Description Language Specification and Usage 12-11

12.3.3.1 Text Strings
Text strings are used to hold arbitrary strings of characters.

quoted_text ::= "[character]*"
The empty string — a quoted text string with no characters within the delimiters — is allowed.

A quoted text string may not contain the quotation mark, which is reserved to be the text string
delimiter. A quoted text string may contain format effectors, hence it may span multiple lines in
a label: the lexical element begins with the opening quotation mark and extends to the closing
quotation mark, even if the closing mark is on a following line. The rules for interpreting the
characters within a text string, including format effectors, are given in the subsection on string
values in Section 12.5.3.

12.3.3.2 Symbol Strings

Symbol strings are sequences of characters used to represent symbolic values. For example, an
image 1D may be a symbol string like ‘J123-U2A’, or a camera filter might be a symbol string
like ‘UVY1".

quoted_symbol ::= ‘[character]+’
A symbol string may not contain any of the following characters:
* The apostrophe, which is reserved to be the symbol string delimiter

* Format effectors, which means that a symbol string must fit on a single line
* Control characters

12.3.4 ldentifiers

Identifiers are used as the names of objects, attributes and units of measurement. They can also
appear as the value of a symbolic literal.

Identifiers are composed of letters, digits, and underscores. Underscores are used to separate
words in an identifier. The first character of an identifier must be a letter. The last character
may not be an underscore.

identifier : : = letter [letter | digit | _letter | _digit]*

Because ODL is not case sensitive, lower case characters in an identifier can be converted to
their upper case equivalent upon input to simplify comparisons and parsing.

Examples — ldentifiers

VOYAGER
VOYAGER 2

12-12 Chapter 12. Object Description Language Specification and Usage

BLUE_FILTER
USA_NASA_PDS_1 0007
SHOT_1 RANGE_TO_SURFACE

12.3.4.1 Reserved ldentifiers

A few identifiers have special significance in ODL statements and are therefore reserved. They
cannot be used for any other purpose (specifically, they may not be used to name objects or
attributes):

end end_group end_object
group object begin_object

12.3.5 Special Characters

ODL is a simple language and it is usually clear where one lexical element ends and another
begins. Spacing characters or format effectors may appear before a lexical element, between any
pair of lexical elements, or after a lexical element without changing the meaning of a statement.

Some lexical elements incorporate special characters (e.g., the decimal point in real numbers or
the quotation marks that delimit a text string). Some special characters are also lexical elements
in their own right. These are:

= The equals sign is the assignment operator.

: The comma separates the elements of an array or a set.

* The asterisk serves as the multiplication operator in units expressions.
The slant serves as the division operator within units expressions.

A The circumflex denotes a pointer to an object.

<> The angle brackets enclose units expressions.

0 The parentheses enclose the elements of a sequence.

{} The braces enclose the elements of a set.

The following two-character sequence is also a lexical element.

** Two adjacent asterisks are the exponentiation sign within units
expressions.

12.4 Statements

An ODL-encoded label is made up of a sequence of zero, one, or more statements followed by
the reserve identifier end.

Chapter 12. Object Description Language Specification and Usage 12-13

label ::= [statement]*
end

The body of a label is built from four types of statements:

statement :: = attribute_assignment_statement |
pointer_statement |
object_statement |
group_statement

Each of the four types of statements is discussed below.

12.4.1 Lines and Records

Labels are also typically composed of lines, where each line is a string of characters terminated
by a format effector or a string of adjacent format effectors. The following recommendations are
given for how software that writes ODL should format a label into lines:

* There should be at most one statement on a line, although a statement may be more than a
single line in length. As noted in Section 12.3.5 above, format effectors may appear
before, after or between the lexical elements of a statement without changing the meaning
of the statement. For example, the following statements are identical in meaning:

FILTER NAME {RED, GREEN, BLUE}

FILTER NAME

{RED,
GREEN,
BLUE}

* Each line should end with a carriage return character followed immediately by a line feed
character. This sequence is an end-of-line signal for most computer operating systems
and text editors.

* The character immediately following the END statement must be either an optional
spacing character or format effector, such as a space, line feed, carriage return, etc.

A line may include a comment. A comment begins with the two characters “/*” and ends with
the two characters “*/”. A comment may contain any character in the ODL character set except
format effectors, which are reserved to mark the end of line (i.e., comments may not be more
than one line long). Comments are ignored when parsing an ODL label. When the comment
delimiters (“/*” and “*/”’) appear within a text string, they are not interpreted as a comment - they
are simply part of the text string. For example, in the following example the comment will be
included as part of the text string:

NOTE = "All good men come to the /* Example of incorrect comment*/
aid of their party"

12-14 Chapter 12. Object Description Language Specification and Usage

Any characters on a line following a comment are ignored.

In some computer systems files are divided into records. Software for writing and reading ODL-
encoded labels in record-oriented files should adhere to the following rules:

* Aline of an ODL-encoded label may not cross a record boundary, i.e., each line should
be contained within a single record. Any space left over at the end of a record after the
last line in that record should be set to all space characters.

* The remainder of the record that contains the END statement is ignored. The data portion
of the file begins with the next record in sequence.

12.4.2 Attribute Assignment Statement

The attribute asignment statement is the most common type of statement in ODL and is used to
specify the value for an attribute of an object. The value may be a singular scalar value, an
ordered sequence of values, or an unordered set of values.

The attribute assignment statement may optionally contain a namespace_identifier. When a
namespace_identifier is prepended to the element_identifier statement, it indicates that the
element_identifier has a local definition within the context indicated by the
namespace_identifier.

assignment_statement ::= attribute_identifier = value

where attribute_identifier::= element_identifier |
namespace_identifier:element_identifier

The syntax and semantics of values are given in Section 12.5.

Examples — Assignment Statements

RECORD BYTES = 800
TARGET NAME = JUPITER
SOLAR LATITUDE = (0.25 <DEG>, 3.00 <DEG>)
FILTER NAME = {RED,
GREEN,
BLUE}

Examples — Assignment Statements that use namespace_identifier

CASSINI:TARGET NAME = JUPITER
MRO:SOLAR LATITUDE (0.25 <DEG>, 3.00 <DEG>)
VOYAGER:FILTER NAME = { RED, GREEN, BLUE }

Chapter 12. Object Description Language Specification and Usage 12-15

12.4.3 Pointer Statement
The pointer statement indicates the location of an object.

pointer_statement :: = ~object_identifier = value

As with the attribute assignment statement, the value may be a scalar value, an ordered sequence
of values, or an unordered set of values.

A common use of pointer statements is to reference a file containing an auxiliary label. For
example:

"STRUCTURE = "TABLE.FMT"

This is a pointer statement pointing to a file named “TABLE.FMT” that contains a description of
the structure of the ancillary table from our sample label. Another use of the pointer statement is
to indicate the position of an object within another object. This is often used to indicate the
position of major objects within a file. The following examples are from the sample label in
Section 12.1:

"~ IMAGE = 40
"IMAGE_ HISTOGRAM = 840
"ANCILLARY TABLE = 842

The first pointer statement above indicates that the image is located starting at the 40th record
from the beginning of the present file. If an integer value is used to indicate the relative position
of an object, the units of measurement of position are determined by the nature of the object. For
files, the default unit of measurement is records. Alternatively, a units expression can be
specified for the integer value to indicate explicitly the units of measurement for the position. For
example, this pointer:

"~ IMAGE = 10200 <BYTES>

indicates that the image starts 10,200 bytes from the beginning of the file.

The object pointers above reference locations in the same files as the label containing the pointer.
Pointers may also reference either byte or record locations in data files that are detached, or
separate, from the label file:

~ IMAGE = ("IMAGE.DAT", 10)
~HEADER = ("IMAGE.DAT", 512 <BYTES>)

12.4.4 OBJECT Statement

The OBJECT statement begins the description of an object. The description typically consists of
a set of attribute assignment statements defining the values of the object’s attributes. If an object
is itself composed of other objects, then OBJECT statements for the component objects are
nested within the object’s description. There is no limit to the depth to which OBJECT

12-16 Chapter 12. Object Description Language Specification and Usage

statements may be nested.
The format of the OBJECT statement is:

object_statement = object = object_identifier
[statement]*
end_object [= object_identifier]

The object identifier gives a name to the particular object being described. For example, in a file
containing images of several planets, the image object descriptions might be named
VENUS_IMAGE, JUPITER_IMAGE, etc. The object identifier at the end of the OBJECT
statement is optional, but if it appears it must match the name given at the beginning of the
OBJECT statement.

12.4.4.1 Implementation of OBJECT Statements

It is recommended that all software for writing ODL include the object identifier at the end as
well as the beginning of every OBJECT statement.

12.4.5 GROUP Statement

The GROUP statement is used to group together statements that are not components of a larger
object. For example, in a file containing many images, the group BEST_IMAGES might contain
the object descriptions of the three highest quality images. The three image objects in the
BEST_IMAGES group don’t form a larger object: all they have in common is their superior
quality.

The GROUP statement is also used to group related attributes of an object. For example, if two
attributes of an image object are the time at which the camera shutter opened and closed, then the
two attributes might be grouped as follows:

GROUP = SHUTTER_ TIMES
START = 12:30:42.177
STOP = 14:01:29.265

END_GROUP = SHUTTER TIMES

The format of the group statement is as follows:

group_statement ::= group = group_identifier
[statement]*
end_group [= group_identifier]

The group identifier gives a name to the particular group, as shown in the example for shutter
times above. The object identifier at the end of the GROUP statement is optional, but if it
appears it must match the name given at the beginning of the GROUP statement. Groups may be

Chapter 12. Object Description Language Specification and Usage 12-17

nested within other groups. There is no limit to the depth to which groups can be nested.

As opposed to the above ODL implementation, the PDS applies the following restrictions to the
use of GROUPS:

1. The GROUP structure may only be used in a data product label which also contains one
or more data OBJECT definitions.

2. The GROUP statement must contain only attribute assignment statements, include

pointers, or related information pointers (i.e., no data location pointers).

GROUP statements may not be nested.

GROUP statements may not contain OBJECT definitions.

Only PSDD elements may appear within a GROUP statement.

The keyword contents associated with a specific GROUP identifier must be identical

across all labels of a single data set (with the exception of the “PARAMETERS”

GROUP, as explained .

o Uk w

Use of the GROUP structure must be coordinated with the responsible PDS discipline Node.

12.4.5.1 Implementation of GROUP Statements

It is recommended that all software for writing ODL include the group identifier at the end as
well as the beginning of every GROUP statement.

12.4.5.2 PDS Usage of GROUP

Although ODL includes the GROUP statement, the PDS does not recommend its use because of
confusion concerning the difference between OBJECT and GROUP.

12.5 Values
ODL provides scalar values, ordered sequences of values, and unordered sets of values.
value :: = scalar_value | sequence_value | set_value
A scalar value consists of a single lexical element:
scalar_value :: = numeric_value |
date_time_value |
text_string_value |

symbol_value

The format and use of each of these scalar values are discussed in the sections below.

12-18 Chapter 12. Object Description Language Specification and Usage

12.5.1 Numeric Values

A numeric scalar value is either a decimal or based integer number, or a real number. A numeric
scalar value may optionally include a units expression.

numeric_value :: = integer [units_expression] |
based_integer [units_expression] |
real [units_expression]

12.5.2 Units Expressions

Many of the values encountered in scientific data are measurements of something. In most
computer languages, only the magnitude of a measurement is represented, without the units of
measurement. ODL, however, can represent both the magnitude and the units of a measurement.
A units expression has the following format:

units_expression .. = <units_factor [mult_op units_factor] * >
units_factor :: = units_identifier [exp_op integer]
mult_op n=*|

exp_op =i

A units expression is always enclosed within angle brackets. The expression may consist of a
single units identifier like “KM?”,for kilometers, or “SEC”, for seconds (for example, “1.341E6
<KM>" or “1.024 <SEC>"). More complex units can also be represented; for example, the
velocity “3.471 <KM/SEC>" or the acceleration “0.414 < KM/SEC/SEC>". There is often more
than one way to represent a unit of measure. For example:

0.414 <KM/SEC/SEC>
0.414 <KM/SEC**2>
0.414 <KM*SEC**-2>

are all valid representations of the same acceleration. The following rules apply to units
expressions:

* The exponentiation operator can specify only a decimal integer exponent. The exponent
value may be negative, which signifies the reciprocal of the units. For example, “60.15
<HZ>” and “60.15 <SEC**-1>" are both ways to specify a frequency.

* Individual units may appear in any order. For example, a force might be specified as
either “1.55 <GM*CM/ SEC**2>" or “1.55 <CM*GM/SEC**2>",

12.5.2.1 Implementation of Numeric Values

There is no defined maximum or minimum magnitude or precision for numeric values. In
general, the actual range and precision of numbers that can be represented will be different for
each kind of computer used to read or write an ODL-encoded label. Developers of software for

Chapter 12. Object Description Language Specification and Usage 12-19

reading/writing ODL should document the following:

The largest magnitude positive and negative integers that can be represented

The largest magnitude positive and negative real numbers that can be represented

The minimum number of significant digits that a real number can be guaranteed to have
without loss of precision. This is to account for the loss of precision that can occur when
representing real numbers in floating point format within a computer. For example, a 32-
bit floating-point number with 24 bits for the mantissa can guarantee at most 6 significant
digits will be exact (the seventh and subsequent digits may not be exact because of
truncation and round-off errors).

If software for reading ODL encounters a numeric value too large to be represented, the software
must report an error to the user.

12.5.3 Text String Values
A text string value consists of a text string lexical element:

text_string_value :: = quoted_text

12.5.3.1 Implementation of String Values

A text string read in from a label is reassembled into a string of characters. The way in which the
string is broken into lines in a label does not affect the format of the string after it has been
reassembled. The following rules are used when reading text strings:

If a format effector or a sequence of format effectors is encountered within a text string,
the effector (or sequence of effectors) is replaced by a single space character, unless the
last character is a hyphen (dash) character. Any spacing characters at the end of the line
are removed and any spacing characters at the beginning of the following line are
removed. This allows a text string in a label to appear with the left and right margins set
at arbitrary points without changing the string value. For example, the following two
strings are the same:

“To be or not to be”
and

“To be or
not to he"

If the last character on a line prior to a format effector is a hyphen (dash) character, the
hyphen is removed with any spacing characters at the beginning of the following line.
This follows the standard convention in English of using a hyphen to break a word across
lines. For example, the following two strings are the same:

12-20 Chapter 12. Object Description Language Specification and Usage

“The planet Jupiter is very big”
and

“The planet Jupi-
ter is very big”

e Control codes, other than the horizontal tabulation character and format effectors,
appearing within a text string are removed.

12.5.3.1.1 PDS Text String Formatting Conventions

The PDS defines a set of format specifiers that can be used in text strings to indicate the
formatting of the string on output. These specifiers can be used to indicate where explicit line
breaks should be placed, and so on. The format specifiers are:

\n Indicates that an end-of-line sequence should be inserted.
\t Indicates that a horizontal tab character should be inserted.
\f Indicates that a page break should be inserted.

\v Must be used in pairs, begin and end. Interpreted as verbatim.

\\ Used to place a backslash in a text string.
For example, the string
“This is the first line \n and this is the second line.”
will print as:

This is the first line
and this is the second line.

Note: These format specifiers have meaning only when a text string is printed - not when the
string is read in or stored.

12.5.4 Symbolic Literal Values

A symbolic value may be specified as either an identifier or a symbol string:

symbolic-value :: = identifier | quoted_symbol

Chapter 12. Object Description Language Specification and Usage 12-21

The following statements assign attributes to symbolic values specified by identifiers:

TARGET NAME = IO

SPACECRAFT NAME = VOYAGER_ 2
SPACECRAFT NAME = 'VOYAGER-2'
SPACECRAFT NAME = 'VOYAGER 2'
REFERENCE KEY ID = SMITH1997
REFERENCE_KEY ID = 'LAUREL&HARDY1997'

The quotes must be used if the symbolic value does not have the proper format for an identifier
or if it contains characters not allowed in an identifier. For example, the value ‘FILTER_+_7’
must be enclosed within quotes, since this would not be a legal ODL identifier. Similarly, the
symbolic value ‘U13-A4B’ must be in quotes because it contains a special character (the dash)
not allowed in an identifier. There is no harm in putting a legal identifier within quotes. For
example:

SPACECRAFT NAME = 'VOYAGER 2'
IS equivalent to the second example in the list above.
Symbolic values may not contain format effectors, i.e., they may not cross a line boundary.

12.5.4.1 Implementation of Symbolic Literal VValues

Symbolic values are converted to upper case on input. This means that a lowercase string is
converted to the equivalent uppercase string; as in the following example:

Original string: SPACECRAFT NAME 'Voyager 2'
Converted string: SPACECRAFT NAME = 'VOYAGER 2'

12.5.4.2 PDS Convention for Symbolic Literal Values

Since the current use of the ODL within the PDS does not require syntactic differentiation
between symbols and text strings, PDS prefers that double quotation marks () be used instead of
apostrophes around symbol strings.

12.5.5 Sequences

A sequence represents an ordered set of values. It can be used to represent arrays and other kinds
of ordered data. Only one- and two-dimensional sequences are allowed.

sequence_value :: = sequence_1D | sequence_2D
sequence_1D .. = (scalar_value [, scalar_value]*)
sequence_2D .2 = ([sequence _1D] +)

12-22 Chapter 12. Object Description Language Specification and Usage

A sequence may have any kind of scalar value for its members. It is not required that all the
members of the sequence be of the same type. Thus a sequence may represent a heterogeneous
record. Each member of a two-dimensional sequence is a one-dimensional sequence. This can be
used, for example, to represent a table of values. The order in which members of a sequence
appear must be preserved. There is no upper limit on the number of values in a sequence.

For example: AVERAGE ECCENTRICITY = (0,1,2,3,4,5,9)

12.5.6 Sets
Sets are used to specify unordered values drawn from some finite set of values.

set_value :: = {scalar_value [, scalar_value]*} | {}

Note that the empty set is allowed: The empty set is denoted by opening and closing brackets
with nothing except optional spacing characters or format effectors between them.

The order in which the members appear in the set is not significant and the order need not be
preserved when a set is read and manipulated. There is no upper limit on the number of values in
a set.

Example

FILTER NAME = { RED, BLUE, GREEN, HAZEL }

12.5.6.1 PDS Restrictions on Sets
The PDS allows only symbol values and integer values within sets.

12.6 ODL Summary
Character Set (Section 12.2)

ODL uses the 1SO 646 character set (the American version of the ISO 646 standard is ASCII).
The ODL character set is partitioned as follows:

character . . = letter | digit | special_character |
spacing_character | format_effector |
other_character

letter i=A-Zaz
digit 1:=0[112|3|4]|5/6/7]8|9
special_character — ::= {|} () |+]-|.1"]"|=]

L # &M <] >

Chapter 12. Object Description Language Specification and Usage 12-23

spacing_character : - = space | horizontal tabulation
format_effector . : = carriage return | line feed |

form feed | vertical tabulation
other_character =S % ?I@|[1]]~

vertical bar | other control characters

Lexical Elements (Section 12.3)

integer . - =[sign] unsigned_integer

unsigned_integer ;o = [digit]+

sign it -

based_integer . » =radix # [sign] [extended_digit]+ #

extended_digit ;o =digit | letter

radix . =unsigned_integer

real : - =[sign] unscaled_real | [sign] scaled_real

unscaled_real . - = unsigned_integer . [unsigned_integer] |
. unsigned_integer

scaled_real : - = unscaled_real exponent

exponent : : = E integer | e integer

date . : =year_doy | year_month_day

year_doy .. =year - doy

year_month_day . : = year - month - day

year . : = unsigned_integer

month .. =unsigned_integer

day . : = unsigned_integer

doy . : = unsigned_integer

time : - = local_time | utc_time | zoned_time

local_time . - =hour_min_sec

utc_time > : =hour_min_sec Z

zoned_time . - =hour_min_sec zone_offset

hour_min_sec > - = hour : minute [: second]

zone_offset : 2 =sign hour [: minute]

hour . . = unsigned_integer

minute .. =unsigned_integer

second . : = unsigned_integer | unscaled_real

date_time . =date T time

quoted_text . - = “[character]*”

quoted_symbol . . = ‘[character]+’

identifier . . = letter [letter | digit | _letter | _digit]*

Statements (Section 12.4)

label . . = [statement]*
end
statement . » =assignment_stmt | pointer_stmt |

12-24

assignment_stmt

pointer_stmt
object_stmt

group_stmt

Values (Section 12.5)

value
scalar_value

numeric_value

units_expression
units_factor
mult_op

exp_op
date_time_value

text_string_value

symbolic_value
sequence_value
sequence_1D
sequence_2D
set_value

Chapter 12. Object Description Language Specification and Usage

object_stmt | group_stmt
. . = element_identifier = value |
namespace_identifier:element_identifier = value
. : =" object_identifier = value
. . = object = object_identifier
[statement]*
end_object [= object_identifier]
. : =group = group_identifier
[statement]*
end_group [= group_identifier]

. : = scalar_value | sequence_value | set_value
. - = numeric_value | date_time_value |
text_string_value | symbolic_value

. : = integer [units_expression] |
based_integer [units_expression] |
real [units_expression]

. » =<units_factor[mult_op units_factor]* >

: : = units_identifier [exp_op integer]

r=*|

T= **

.. = date | time | date_time

. : = quoted_text

. - = identifier | quoted_symbol

. : =sequence_ID | sequence_2D

. . = (scalar_value [, scalar_value]*)

.- =([sequence_ID]+)

. - ={scalar_value [,scalar_value]* } | { }

12.7 Differences Between ODL Versions

This section summarizes the differences between the current Version 2 of ODL and the previous
Versions 0 and 1. Software can be constructed to read all three versions of ODL, however it is
important that software for writing labels only write labels that conform to ODL Version 2.

12.7.1 Differences from ODL Version 1

Version 1 labels were used on the Voyager to the Outer Planets CD-ROM disks and many other
data sets. Version 1 did not include the GROUP statement and had more restrictive definitions
for sets, which were limited to integer or symbolic literal values, and sequences, which were
limited to arrays of homogeneous values. The following sections detail non-compatible
differences and how they can be handled by software writers.

Chapter 12. Object Description Language Specification and Usage 12-25

12.7.1.1 Ranges
Version 1 of ODL had a specific notation for integer ranges:

range_value :: = integer..integer

This notation is not allowed in ODL Version 2, though parsers may still recognize the ‘double-
dot’ range notation. On output, a range is now encoded as a two value sequence, with the low-
value of the range being the first element of the sequence and the high-value being the second

element of the sequence.

12.7.1.1.1 Delimiters in Sequences and Sets

In Version 1 the individual values in sets and sequences could be separated by a comma or by a
spacing character. As of Version 2, a comma is required. Parsers may allow spacing characters
between values rather than commas. Software that writes ODL should place commas between all
values in a sequence or set.

12.7.1.1.2 Exponentiation Operator in Units Expressions

In Version 1 of ODL the circumflex character (*) was used as the exponentiation operator in
units expressions rather than the two-asterisk sequence (**). Parsers may still allow the
circumflex to appear within units expressions as an exponentiation operator. Software for writing
ODL should use only the ** notation.

12.7.2 Differences from ODL Version 0

Version 0 of ODL was developed for and used on the PDS Space Science Sampler CD-ROM
disks. The major difference between this and subsequent versions is that VVersion 0 did not
include the OBJECT statement. All of the attributes specified in a label described a single object:
the file that contained the label (or that was referenced by a pointer).

12.7.2.1 Date-Time Format

ODL Version 0 was produced prior to the space community's acceptance of the ISO/DIS 8601
standard for dates and time and it uses a different date and date-time format. The format for
Version 0 dates and date-times is as follows:

date . = year / month / day_of _month | year/day_of year
date_time .. = date - time zone
zone .. = < identifier>

The options for time specification in ODL Version 0 are a subset of those in Version 2.
Consequently, parsers that handle Version 2 time formats will also handle Version 0 times.

12-26 Chapter 12. Object Description Language Specification and Usage

12.7.3 ODL/PVL Usage

The concept for a Parameter VValue Language/Format (PVL) is being formalized by the
Consultative Committee for Space Data Systems (CCSDS). It is intended to provide a human
readable data element/value structure to encode data for interchange. The CCSDS version of the
PVL specification is in preliminary form.

Some organizations that deal with the PDS have accepted PVL as their standard language for
product labels. PVL is a superset of ODL, so some PVL constructs are not supported by the PDS.
In addition, some ODL constructs may be interpreted differently by PVL software.

The ODL/PVL usage standard defines restrictions on the use of ODL/PVL in archive quality
data sets. These restrictions are intended to ensure the compatibility of PVL with ODL and
existing software.

1. A label constructed using PVL may be attached - embedded in the same file as the
data object it describes, or detached - residing in a separate file and pointing to the
data file the label describes.

2. All statements must be terminated by a <CR> <LF> pair. Semicolons may not be
used to terminate statements.

3. Only alphanumeric characters and the underscore character may be used in data ele-
ments and undelimited text values (literals). In addition, data elements and
undelimited text values must begin with a letter.

4. Keywords must be 30 characters or less in length.

5. Keywords and standard values must be in upper case. Literals and strings may be in
upper case, lower case, or mixed case.

6. Comments must be contained on a single line, and a comment terminator (*/) must
be used. Comments may not be embedded within statements. Comments may not be
used on the same line as any statement if the comment precedes the statement.
Comments may be on the same line as a statement if the comment follows the
statement and is separated from the statement by at least one white space, but this is
not recommended.

7. Text values that cross line boundaries must be enclosed in double quotation marks

().

8. Values that consist only of letters, numbers, and underscores and that begin with a
letter may be used without quotation marks. All other text values must be enclosed
in either single (* *) or double (*) quotation marks.

Chapter 12. Object Description Language Specification and Usage 12-27

10.

11.

12.

13.

14.

15.

16.

Sequences are limited to two dimensions. Null (empty) sequences are not allowed.
Sets are limited to one dimension. In other words, sets and sequences may not be
used inside a set.

Only the OBJECT, END_OBJECT, GROUP and END_GROUP aggregation mark-
ers may be used.

Unit expressions are only allowed following numeric values (i.e.,
“DATA_ELEMENT =7 <BYTES>" is valid. but “DATA_ELEMENT = MANY
<METERS>" is not).

Unit expressions may include only alphanumeric characters, the underscore, and the
symbols “*”, “/7, “(”, “)”, and “**” (the last representing exponentiation).

Signs may not be used in non-decimal numbers (i.e., “2#10001#" is valid, but
“-2#10001#” and “2#-10001#” are not). Only the bases 2, 8, and 16 may be used for
non-decimal numbers.

Alternate time zones (e.g., YYYY-MM-DDTHH:MM:SS.SSS + HH:MM) may not
be used in a PDS label. The only allowed time formats are

(1) YYYY-MM-DDTHH:MM:SS.SSS.
(2) YYYY-DDDTHH:MM:SS.SSS.

See Section 7.3.2(6) for a more detailed description.
Values in integral parts of dates and times must be padded on the left with zeroes as
necessary to fill the field. In other words, the first of April in the year 2001 must be

written as “2001-04-01", not “2001-4-1"

An END statement must conclude each ODL/PVL statement list.

The following are guidelines for formatting ODL/PVL expressions.

1.

2.

The assignment symbol (=) must be surrounded by blanks.

Assignment symbols (=) should be aligned if possible.

Keywords placed inside an aggregator (OBJECT or GROUP) must be indented with
respect to the OBJECT and END_OBJECT or GROUP and END_GROUP state-

ments which enclose them.

PDS label lines must be 80 characters or less in length, including the end-of-
statement (i.e., <CR> <LF>) delimiter. (Note that while 80 characters can be

12-28

Chapter 12. Object Description Language Specification and Usage

displayed on most screens, some editors and databases will wrap or truncate lines
that exceed 72 characters.)

Horizontal tab characters may not be used in PDS labels. Although both ODL and
PVL allow the use of these characters some simple parsers cannot handle them. The
equivalent number of space characters should be used instead.

Chapter 13. PDS Objects / Groups 13-1

Chapter 13. PDS Objects / Groups

The Planetary Data System has designed a set of standard Objects and Groups to be used for
submitting catalog object information as well as for labeling data products. These standard
Objects and Groups, along with definitions of individual keywords comprising those Objects and
Groups, are defined in the Planetary Science Data Dictionary. In addition, Object and Group
definitions and examples are also included in Appendix A and Appendix B of this document.

13.1 Generic and Specific Data Object Definitions

For each type of data object that PDS has defined (i.e., IMAGE, TABLE, etc.), there are two
categories of definitions: generic and specific. A generic object definition is the universal
definition of an object, or superset of keywords that can be used. A specific object definition is a
subset of keywords used for a particular data product to allow effective use of validation tools.

Generic object definitions are designed and approved by the Planetary Data System, and defined
in the Planetary Science Data Dictionary. Each object definition lists the elements and sub-
objects required to be present each time the object is used in a product label. The dictionary
definition also provides a list of additional, optional keywords that are frequently used by data
preparers. Finally, note that any element defined in the PSDD may be included as an optional
element in any object definition, at the discretion of the data preparer.

A specific object definition is defined for a particular data product and is based on a single
generic object. The data preparer, in consultation with a data engineer, combines all the required
elements of that object with a set of optional elements selected for their relevance to the data at
hand. The result is a specific object definition. This definition is subject to approval during a
design review.

The following examples illustrate the evolution from the generic IMAGE object to a specific
IMAGE object, followed by an instance of that specific IMAGE. Note that when a specific
object definition is created and used, the usage must be consistent for all labels using that object.

OBJECT = GENERIC_OBJECT_DEFINITION
NAME = IMAGE
STATUS_TYPE = APPROVED

STATUS_NOTE "v2.1 1991-01-20 MDM New Data Object Definition"
DESCRIPTION "An image object is a regular array of sample
values. Image objects are normally processed with special display tools to
produce a visual representation of the sample values. This is done by assigning
brightness levels or display colors to the various sample values. Images are
composed of LINES and SAMPLES. They may contain multiple bands, in one of
several storage orders.

Note: Additional engineering values may be prepended or appended to each LINE
of an image, and are stored as concatenated TABLE objects, which must be named
LINE_PREFIX and LINE_SUFFIX. IMAGE objects may be associated with other
objects, including HISTOGRAMs, PALETTEs, HISTORYs and TABLEs which contain
statistics, display parameters, engineering values or other ancillary data."

SOURCE_NAME = "PDS CN/M.MARTIN"
REQUIRED_ELEMENT SET = {LINE_SAMPLES,

13-2 Chapter 13. PDS Objects / Groups

LINES, SAMPLE BITS,
SAMPLE_TYPE}
OPTIONAL ELEMENT SET = {BAND_ SEQUENCE,
BAND STORAGE_TYPE,
BANDS, CHECKSUM, DERIVED MAXIMUM,
DERIVED MINIMUM, DESCRIPTION,
ENCODING TYPE, FIRST LINE,
FIRST LINE_SAMPLE, INVALID,
LINE _PREFIX BYTES, LINE_SUFFIX BYTES, MISSING,
OFFSET, SAMPLE BIT MASK, SAMPLING FACTOR,
SCALING_FACTOR, SOURCE FILE_ NAME,
SOURCE_LINES, SOURCE_LINE_ SAMPLES,
SOURCE_SAMPLE_BITS, STRETCHED FLAG,
STRETCH MAXIMUM, STRETCH MINIMUM, PSDD}
REQUIRED OBJECT_ SET "N/A"
OPTIONAL_ OBJECT SET = "N/A"

OBJECT_CLASSIFICATION_TYPE = STRUCTURE

OBJECT = ALIAS
NAME = "N/A"
USAGE_NOTE = "N/A"
END_OBJECT = ALIAS
END_OBJECT = GENERIC_OBJECT_DEFINITION

This next example illustrates an IMAGE object definition being used for a specific case.

OBJECT = SPECIFIC_OBJECT_DEFINITION

NAME = XYZ_ IMAGE

STATUS_TYPE = APPROVED

STATUS_NOTE = "v2.1 1991-02-10 TMA New specific data object
definition"

DESCRIPTION = "The XYZ image is..."

SOURCE_ NAME = "PDS CN/M.MARTIN"

REQUIRED_ELEMENT_ SET = {LINE_SAMPLES, LINES, SAMPLE BITS,

SAMPLE TYPE, SAMPLING FACTOR,
SOURCE_FILE NAME,

SOURCE_LINES, SOURCE_LINE SAMPLES,
SOURCE_SAMPLE_BITS, FIRST LINE,
FIRST LINE_ SAMPLE}

OBJECT_CLASSIFICATION_TYPE = STRUCTURE

OBJECT = ALIAS
NAME = "N/A"
USAGE_NOTE = "N/A"
END_OBJECT = ALIAS
END_OBJECT = SPECIFIC_ OBJECT_DEFINITION

13.1.1 Primitive Objects

Generic objects have a subclass called primitive objects that includes the ARRAY,
COLLECTION, ELEMENT, and BIT_ELEMENT objects. The primitive objects are used as the
building blocks for describing very irregular data that cannot be accommodated by any other

Chapter 13. PDS Objects / Groups 13-3

generic object. If at all possible, standard, well-supported generic objects (such as TABLE and
IMAGE) should be used to describe archival data.

13.2 Generic and Specific Data Group Definitions

For each type of data Group that PDS has defined (i.e., PARAMETERS, etc.), there are two
categories of definitions: generic and specific. A generic group definition is the universal
definition of a group, or superset of keywords that can be used. A specific group definition is a
subset of keywords used for a particular data product to allow effective use of validation tools.

As with OBJECTSs (see PDS Standards Reference, section 13.1), there are two categories of
GROUPs, generic and specific. The generic GROUP is the universal definition of the GROUP,
specified in an appendix of the Standards Reference. The specific GROUP is an implementation
of the generic GROUP for a particular data set. Shown below is a generic GROUP definition,
and then an example of an instance of that GROUP in a data product.

OBJECT

NAME
STATUS_TYPE
STATUS_NOTE "v1l.0 2001-07-09 EDR New Group Definition"
DESCRIPTION "A camera model group is a collection of parameters
necessary to fully describe the geometric characteristics of a camera system."

GENERIC_GROUP_DEFINITION
CAMERA MODEL
PENDING

SOURCE_ NAME = "PDS IMG/E. RYE"
REQUIRED ELEMENT_ SET = {CAMERA MODEL_NAME,
CAMERA MODEL_TYPE,

CAMERA MODEL_DESC, CALIBRATION_SOURCE_ID,
GEOMETRY_SOURCE_ID, COORDINATE_ SYSTEM NAME,
MODEL_COMPONENT ID, MODEL_COMPONENT NAME,
MODEL_COMPONENT UNIT ID}

OPTIONAL_ ELEMENT SET = {MODEL_COMPONENT 1 VECTOR,
MODEL_COMPONENT_ 2 VECTOR,
MODEL_COMPONENT_ 3 VECTOR,
MODEL_COMPONENT 4 VECTOR,
MODEL_COMPONENT_ 5 VECTOR,
MODEL_COMPONENT_ 6 VECTOR,
MODEL_COMPONENT 7 VECTOR, PSDD}

OBJECT = ALIAS
NAME = "N/A"
USAGE_NOTE = "N/A"
END_OBJECT = ALIAS
END_OBJECT = GENERIC_GROUP_DEFINITION

An example of using a GROUP follows:

"IMP-CAMERA"
(C, A, H, V)
("CENTER", "AXIS",

COORDINATE SYSTEM NAME
MODEL_COMPONENT ID
MODEL_COMPONENT NAME

GROUP = CAMERA MODEL
CAMERA MODEL_NAME = "MIPS-0"
CAMERA MODEL_TYPE = "CAHV"

~CAMERA MODEL_DESC = "CAHV.ASC"
CALIBRATION SOURCE_ID = "UOFA-BACKLASH"
GEOMETRY SOURCE_ID = "TELEMETRY"

13-4

MODEL_COMPONENT UNIT ID
MODEL_COMPONENT 1 VECTOR
MODEL_COMPONENT 2 VECTOR
MODEL_COMPONENT 3 VECTOR
MODEL_COMPONENT 4 VECTOR
END_OBJECT

Chapter 13. PDS Objects / Groups

"HORIZONTAL", "VERTICAL")
("m", "none", "pixel", "pixel")
(3.469, 14.593, 8.937)

(0.351, 0.758, 17.932)

(14.020, 15.336, 23.714)
(27.423, 3.719, 16.426)

CAMERA MODEL

In order to facilitate the inclusion of multiple instances of keywords within data product labels
without requiring a whole host of new GROUPs, there is a special GROUP called the
PARAMETERS GROUP. It has no required elements, and the set of all elements in the PSDD as

its optional element set.

OBJECT

NAME
STATUS_TYPE
STATUS_NOTE
DESCRIPTION

SOURCE_NAME
REQUIRED ELEMENT SET
OPTIONAL_ ELEMENT SET =

OBJECT
NAME

USAGE_NOTE
END_OBJECT

END_OBJECT

For example:

GROUP

SHUTTER_MODE
FILTER NUMBER
FILTER NAME
EXPOSURE_DURATION
END_OBJECT

GROUP

SHUTTER_MODE
FILTER NUMBER
FILTER NAME
EXPOSURE_DURATION
END_OBJECT

GENERIC_GROUP_DEFINITION

PARAMETERS

PENDING

"V1.0 2001-07-09 EDR New Group Definition"
"The parameters group provides a mechanism for
Grouping multiple sets of related parameters
within a data product label."

"PDS IMG/E. RYE"

= {}
{PSDD}

ALIAS
IIN/AH
IIN/AII

ALIAS

GENERIC_GROUP_DEFINITION

COMMANDED_INST PARAMETERS
"BOTSIM"

5

"L570-R570"

1.05

COMMANDED_INST PARAMETERS

TELEMETRY_INST PARAMETERS
"AUTO"

0

"CLEAR"

0.773

TELEMETRY_INST PARAMETERS

13.2.1 Implementation of Group Statements
PDS applies the following restrictions to the use of GROUPS:

1. The GROUP structure may only be used in a data product label which also contains one
or more data OBJECT definitions.

2. The GROUP statement must contain only attribute assignment statements, include
pointers, or related information pointers (i.e., no data location pointers).

Chapter 13. PDS Objects / Groups 13-5

GROUP statements may not be nested.

GROUP statements may not contain OBJECT definitions.

Only PSDD elements may appear within a GROUP statement.

The keyword contents associated with a specific GROUP identifier (e.g.,
CAMERA_MODEL) must be identical across all labels of a single data set.

ISR

Usage of a GROUP structure must be coordinated with and approved by the responsible PDS
discipline Node.

Descriptors may be pre-pended to any generic Group name to produce, and distinguish between,
specific instances of the generic group (i.e., any generic Group name may be preceded with a
qualifier to uniquely identify the specific instance of the generic Group). For example, the
generic PARAMETERS Group could have specific instances of “A_PARAMETERS”,
“B_PARAMETERS”, etc. Pre-pending a descriptor to the generic instances allows multiple
instances of the Group to be repeated within a single label.

The specific GROUP is an implementation of the generic GROUP for a particular data set and
must be consistent in its structure (i.e., use the same set of keywords) across the data set. For
example, the PARAMETERS Group may consist of any keywords defined within the PSDD.

In the following examples, the TELEMETRY_GEOMETRY_PARAMETERS Group consists of
three keywords and the CORRECTED_GEOMETRY_PARAMETERS Group consists of three
keywords. In this case, both specific instances use the same keywords but could consist of
different sets of keywords. Both instances can be collocated within a single data product label.
But, each instance across the dataset must contain the same set of keywords.

GROUP
GEOMETRY SOURCE_1ID
INSTRUMENT AZIMUTH
INSTRUMENT ELEVATION
END_OBJECT

TELEMETRY_ GEOMETRY_ PARAMETERS
"TELEMETRY"

35.6 <DEGREES>

-15.4 <DEGREES>

TELEMETRY_ GEOMETRY_ PARAMETERS

GROUP
GEOMETRY SOURCE_1ID
INSTRUMENT AZIMUTH
INSTRUMENT ELEVATION
END_OBJECT

CORRECTED GEOMETRY PARAMETERS
"MIPS_ MPFMOS"

35.9 <DEGREES>

-15.5 <DEGREES>

CORRECTED GEOMETRY PARAMETERS

GROUP
GEOMETRY SOURCE_1ID
INSTRUMENT AZIMUTH
INSTRUMENT ELEVATION
END_OBJECT

CORRECTED_GEOMETRY_ PARAMETERS
"UOFA-BACKLASH"

35.8 <DEGREES>

-15.6 <DEGREES>
CORRECTED_GEOMETRY_ PARAMETERS

In the near term, the only validation requirements for GROUPs will be that all the elements
present in a GROUP must be present in the PDS Data Dictionary. In the future, it is hoped that
the contents of the GROUPs will also be validated against their generic GROUP specifications.
This would be to ascertain that all the required elements of a particular GROUP are present and
that no elements are present that are not specified in the set of required and optional elements.

13-6 Chapter 13. PDS Objects / Groups

(This page intentionally left blank.)

Chapter 14. Pointer Usage 14-1

Chapter 14. Pointer Usage

Pointers are used within PDS labels to indicate the relative locations of objects in the same file
and to reference external files. Pointer statements begin with a caret (“””) and the name of a PDS
object or element. The value part of the pointer statement indicates the location of the referenced
information.

14.1 Types of Pointers

Pointer statements fall into three main categories: data location pointers, include pointers, and
related information pointers.

14.1.1 Data Location Pointers (Data Object Pointers)

The most common use of pointers is for linking object descriptions to the actual data. The syntax
of these pointers depends on whether the label is attached or detached from the data it describes.
There are five forms for the value fields, as shown in these examples:

(1) ~IMAGE =12

(2 ~IMAGE = 600 <BYTES>

(3) ~INDEX_TABLE ="INDEX.TAB"

(4) SERIES = ("C100306.DAT", 2)

(5) "SERIES ("C100306.DAT", 700 <BYTES>)

Examples (1) and (2) are pointers in attached labels. This type of pointer allows reading software
to scan the label for the appropriate pointer and then skip right to the data at its location
elsewhere in the file. In the first case, the data begin at record 12 of the labeled file. In the
second, the data begin at byte 600.

External data files are referenced in examples (3), (4) and (5). Since these pointers occur in
detached labels, they must identify a file name and (optional) offset. In example (3), the data
begin at record 1 of the data file “INDEX.TAB” (i.e., no explicit offset is taken as an offset of
“1”). In example (4), the data begin at record 2 of the data file, "C100306.DAT", whereas in
example (5), the data begin at byte 700.

14.1.2 Include Pointers

Another common use of pointers is to reference external files in PDS labels or catalog objects.
Files referenced by include pointers are included directly at the location of the pointer statement.
These pointers are classified as include-type pointers since they act like the “#include”
statements in C program source files. STRUCTURE, CATALOG, and MAP_PROJECTION
pointers fall into this category. Following are some examples of include pointer statements:

(1) ~STRUCTURE
(2) ~STRUCTURE

"ENGTAB.FMT"
"IMAGE.FMT"

14-2 Chapter 14. Pointer Usage

(3) ~CATALOG ="CATALOG.CAT"
(4) ~DATA_SET_MAP_PROJECTION ="DSMAPDIM.CAT"

The structure file in example (1) is referenced by a TABLE object. The “ENGTAB.FMT” file
contains column object definitions needed to complete the TABLE definition. Some column
definitions might be stored in a separate file if, for example, a number of different TABLE
objects use the same definitions. Similarly, in example (2) an IMAGE object definition (i.e., all
statements beginning with “OBJECT = IMAGE” and ending with “END_OBJECT = IMAGE”")
is contained in an external file called “IMAGE.FMT”.

In example (3), the external file “CATALOG.CAT” is referenced by a VOLUME object in order
to provide a full set of catalog information associated with the volume without having to
duplicate definitions that already exist in the other file.

In example (4), the external file “DSMAPDIM.CAT” is referenced by an
IMAGE_MAP_PROJECTION object to complete the map projection information associated
with the image.

14.1.3 Related Information Pointers (Description Pointers)

The third and final use of pointers occurs in PDS labels that reference external files of additional
documentation of special use to human readers. These pointers are formed using elements that
end in “DESCRIPTION” or “DESC”. They reference text files not written in ODL. Note: These
pointers are not meant to be used to refer to software tools.

For example:

ADESCRIPTION ="TRK_2_ 25.ASC"
In this example, the pointer references an external ASCII document file, TRK_2_25.ASC, which
provides a detailed description of the data. Note that in this case the documentation file must

have its own PDS label, since the label containing the "DESCRIPTION pointer describes the
contents of a different file.

Chapter 14. Pointer Usage 14-3

14.2 Rules for Resolving Pointers
Following are the rules for resolving pointer references to external files (see the Volume
Organization and Naming chapter in this document for information about physical and logical
volume structures):
For a pointer statement in FILE_A:

(¢D)] Look in the same directory as FILE_A

(2a) For asingle physical volume (no logical volumes), look in the following top level

directory:
Pointer Directory
ASTRUCTURE LABEL
"CATALOG CATALOG
"DATA_SET_MAP_PROJECTION CATALOG*
AINDEX_TABLE INDEX
ADESCRIPTION or "TEXT DOCUMENT

(2b) Within a logical volume, look in the top level subdirectory specified by the
LOGICAL_VOLUME_PATH_NAME keyword:

Pointer LOGICAL_VOLUME_PATH_NAME /
Directory
ASTRUCTURE LABEL
ACATALOG CATALOG
"DATA_SET_MAP_PROJECTION CATALOG*
NINDEX_TABLE INDEX
ADESCRIPTION or "TEXT DOCUMENT

* Note: For volumes using PDS Version 1 or 2 standards, the MAP_PROJECTION files
may be located in the LABEL directory

All pointers to data objects should be resolved in step (1), since these files are always required to
be located in the same directory as the label file.

14-4 Chapter 14. Pointer Usage

(This page intentionally left blank.)

Chapter 15. Record Formats 15-1

Chapter 15. Record Formats

The choice of proper record format for a data file is influenced by a number of factors. In
general, the PDS strongly recommends a record format of fixed-length or stream be used
whenever possible to ensure transportability across operating systems and computer platforms
and to avoid potential difficulties with interpretation of the underlying data. Records of type
FIXED_LENGTH are required for ASCII files described by TABLE Objects. Records of type
VARIABLE_LENGTH may be used in cases where storage efficiency is a major consideration,
as, for example, in storing compressed images. Records of type STREAM should be used for text
files for ease of transportation to various computer systems. Input/output operations with stream
files will generally use string-oriented access, retrieving one delimited record from the file each
time.

The RECORD_TYPE element in the PDS label indicates the format of the records in the
associated data file (attached or detached).

Table 15.1: Recommended Record Formats

RECORD_TYPE= RECORD_TYPE=STREAM | RECORD_TYPE=VARIABLE
FIXED_LENGTH
Data format BINARY, ASCII ASCII BINARY
Environment STRUCTURED AD HOC STRUCTURED (VAX/VMS)
Data volume LARGE SMALL, MEDIUM VERY LARGE
Input / Output READ / WRITE STRING 1/0 CUSTOM, SPICE

15.1 FIXED_LENGTH Records

Records of type FIXED_LENGTH normally use a physical record length (RECORD_BYTES)
that corresponds directly to the logical record length of the data objects (that is, one physical
record for each image line, or one physical record for each row of a table). In some cases, logical
records are blocked into larger physical records to provide more efficient storage and access to
the data. This blocking is still an important consideration when storing data on magnetic tape,
(which requires a gap on the tape between records), but is not generally a consideration in data
sets stored on magnetic or CD-ROM disks. In other cases, the physical record length is
determined by compatibility with external systems or standards, as in FITS-formatted files.

The PDS strongly recommends using a physical record length that matches the logical record
length of the primary data object in the file for greatest compatibility with application software.
In the data label, RECORD_BYTES defines the physical record length.

Figure 15.1 illustrates the physical and logical structure used to build a standard PDS
FIXED_LENGTH file.

15-2 Chapter 15. Record Formats

Physical Structure Logical Structure

<— Record Bytes = 1204 >
Label Record 1 Lable line 1 <cr If> Label line 2 <cr If> ...
Label Record 2 Label line 59 <cr If> Label line 60 <cr If> | Blank fil
Histogram Rec 256 32 bit integers Blank fill
Eng Table Rec eng data I Blank fill
Line Hdr Rec 1
Line Hrd Rec 2

Line Hdr Rec 55 [T [1 11 [1 | Banki
Line Rec 1
Line Rec 2

Line Rec 1056 |

Figure 15.1 Physical and Logical Structure for Fixed Length Files

15.2 STREAM Records

The STREAM record type is reserved for ASCII text files. The records must be delimited by the
two-character (carriage return, linefeed) sequence (“<CR><LF>" or “CR/LF”). This is the same
record delimiter used for all PDS label and catalog files.

All major operating systems recognize one of either the carriage return, the line feed, or the
CRI/LF sequence as an ASCII record delimiter; thus, <CR><LF> will work in all cases. There are
utilities available for Macintosh (Apple File Exchange) and Unix (tr translation utility) systems
to remove the unneeded extra control character.

Note that the STREAM record type should only be used in those cases where the data contain
delimited ASCII records that are not of fixed length. The FIXED_LENGTH specification should
be used wherever possible.

15.3 VARIABLE_LENGTH Records

PDS data files using the VARIABLE_LENGTH record type must use the VAX/VMS counted
byte string format. That is, each record string is preceded by a two-byte LSB integer containing
the length of the record. The records may not contain carriage control characters.

The use of the VARIABLE_LENGTH record type is discouraged because of its inherent
dependence on a priori knowledge of the record structure for proper reading and writing.
Notwithstanding, VARIABLE_LENGTH records may be used in the following circumstances:

* When supporting software, which can be executed on a variety of hosts, is provided along
with the data. For example, the Voyager CD-ROM disks contain variable-length

Chapter 15. Record Formats 15-3

compressed images along with a decompression program that can be compiled and
executed on VAX, PC, Macintosh and UNIX platforms. The decompression program
reformats the data into a variety of forms.

* When the files are intended for use only in a specific environment that supports the
selected record structure. For example, the Viking Infrared Thermal Mapper (IRTM)
CDROM uses a VAX/VMS variable-length record format for software and command
files. Note, however, that such proprietary formats are generally inappropriate for PDS
deep archiving purposes and should be vigorously avoided in archive volumes.

15.4 UNDEFINED Records

Records with an undefined record type have no specific record structure. For files with attached
labels, the label portion should be written using the STREAM conventions described above.
When the record type is designated UNDEFINED, no record terminators are recognized and no
record length is implied; the data are taken to be a continuous stream of bytes.

The use of the UNDEFINED record type when referring to a single data file is strongly
discouraged. “RECORD_TYPE = UNDEFINED” is properly used in cases where a single label
points to two or more different data files with different record types (i.e., one file with STREAM
records and another with VARIABLE_LENGTH records).

15-4 Chapter 15. Record Formats

(This page intentionally left blank.)

Chapter 16. SFDU Usage 16-1

Chapter 16. SFDU Usage

This standard defines restrictions on the use of Standard Formatted Data Units (SFDUS) in
archive quality data sets. PDS does not require that data products be packaged as SFDUSs.
However, if data products are packaged as SFDUSs, the following standards apply.

The Consultative Committee for Space Data Systems (CCSDS) has prepared a recommendation
for the standardization of the structure and construction rules of SFDUs for the interchange of
digital space-related data. An SFDU is a type-length-value object. That is, each SFDU consists
of: a type identifier which indicates the type of data within the SFDU; a length field which either
states the length of the data or indicates how the data are delimited; and a value field which
contains the actual data. Both the type and the length fields are included in a 20-byte label, called
an SFDU label in this document. The value field immediately follows the 20-byte SFDU Label.
For PDS data products, this value field is the PDS label, including one or more data object
definitions.

There are three versions of SFDUs. In Version 1, the length of an SFDU is represented in binary.
In Version 2, the length could also be represented in ASCII. In Version 3, the length can be
represented in binary, ASCII, or using one of several delineation techniques. Unless previously
negotiated, all PDS data products packaged as SFDUs must be constructed using Version 3
SFDU Labels.

A Version 3 SFDU label consists of the following parts:

1) Control Authority ID 4 Bytes
2) Version ID 1 Byte
3) Class ID 1 Byte
4) Delimiter Type 1 Byte
5) Spare 1 Byte
6) Description Data Unit ID 4 Bytes
7) Length 8 Bytes

The Control Authority ID and the Description Data Unit ID together form an identifier called an
Authority and Description Identifier which points to a semantic (Planetary Science Data
Dictionary, in the PDS case) and syntactic (Object Definition Language, 2.0) description of the
value field. . The Data Description Unit ID varies by data product type. It is supplied by the JPL
Control Authority and is usually documented in the science data product Software Interface
Specifications (SIS).

Version 3 allows delimiting of SFDUs either by end-of-file or by start and end markers rather
than by explicit byte counts. Further details of the SFDU architecture will not be discussed here.
Other sources of information can be found in the SFDU References listed in the Introduction to
this document.

16-2 Chapter 16. SFDU Usage

Since archive quality data sets are internally defined, only a limited set of SFDU labels are used
to identify the files on a data volume in order to simplify not only the archive products
themselves, but also the processing of those products by software. PDS labels are included in the
data products, and the information in these PDS labels are considered more than adequate for
data identification and scientific analysis.

PDS does not require SFDU labels in its archive products. However, SFDU labels can be
accommodated in PDS products when they are required by projects or other agencies concerned
in the preparation of the data. The standard use of SFDUs in PDS labels from current missions
and data restorations is different from the use of SFDUSs in data products from upcoming
missions fully supported by the Jet Propulsion Laboratory’s Advanced Multi-Mission Operations
System (AMMOS). The following sections define the standards for including SFDUs in each
case.

Two SFDU organizations are allowed in PDS data products. The first organization (the ZI
Structure) has been used historically in PDS data products from restoration and past missions.
The second organization (the ZKI organization) is required for data products that pass through
the JPL Advanced Multi-Mission Operations System (AMMOS) project database.

16.1 The ZI SFDU Organization

Any PDS data products packaged as SFDUs that are not required to pass through the AMMOS
project database as part of an active mission may use the following SFDU organization.

Each instance of a data product (file) in a data set must include two (and only two) SFDU labels.
These are a Z Class SFDU label and an | Class SFDU label. The two SFDU labels are
concatenated (i.e. Z, then I) and left justified in the first line or record of the PDS label for each
data product. (See Figure 16.1.) In the case of data products with detached PDS labels, the two
SFDU labels must appear in the first record of the PDS label files and no SFDU labels appear in
the data object files. (See Figure 16.2.)

Z I
PDS LABEL
FILE
END
DATA OBJECT
EOF

Chapter 16. SFDU Usage

16-3

Figure 16.1 Attached PDS Label Example for non-AMMOQOS compatible products

Z I
FILE PDS LABEL
END EOF
FILE DATA OBJECT
EOF

Describes

Figure 16.2 Detached PDS Label Example for non-AMMOS compatible products

The first SFDU label must be a Z Class Version 3 SFDU label. “Z Class” indicates that the value
field (everything after the first 20 bytes) is an aggregation. In this case, the aggregation consists
of only the I Class SFDU. This label also indicates that the delimiter type is End-of-File and that
this SFDU (data product) is terminated by a single End-of-File. It is formed as follows:

1) Control Authority ID
2) Version ID

3) Class ID
4) Delimiter Type
5) Spare

6) Description Data Unit ID
7) Length Field

Example: CCSD3ZF000010000000I

CCSD

3

z

F

0

0001
00000001

The second SFDU label must be an | Class Version 3 SFDU label. “Class I”” indicates that the

16-4 Chapter 16. SFDU Usage

value field (everything after the second 20 bytes) is application data, i.e., the PDS label and the
data object(s). The Data Description Unit ID of “PDSX” indicates that the data product uses the
Object Description Language (ODL) syntax and the Planetary Science Data Dictionary
semantics to present descriptive information. This SFDU label also indicates that the SFDU (data
products) will be terminated by a single End-of-File. It is formed as follows:

1) Control Authority ID NJPL

2) Version ID 3

3) Class ID I

4) Delimiter Type F

5) Spare 0

6) Description Data Unit ID PDSX

7) Length Field 00000001

Example: NJPL3IFOPDSX0000000I

CCSD3ZF0000100000001NJPL3FOPDSX00000001 <CR> <LF>
PDS_VERSION_ID = PDS3 <CR> <LF>

RECORD_TYPE = STREAM <CR> <LF>

RECORDS = 100 <CR> <LF>

END <CR> <LF>
DATA OBJECT

EOF

Figure 16.3: SFDU Example

The two SFDU labels are concatenated and left justified in the first line or record of the PDS
label. Note that there are no characters between the two SFDU labels. See Figure 16.3.

For RECORD_TYPE = STREAM or FIXED_LENGTH or UNDEFINED, the concatenated
SFDU labels must be followed immediately by <CR><LF>. For data products that have
RECORD_TYPE =VARIABLE_LENGTH, the two SFDU labels may not be followed by
<CR><LPF>.

STREAM example CCSD3ZF000010000000INJPL3IFOPDSX0000000l <CR><LF>
FIXED_LENGTH Example CCSD3ZF000010000000INJPL3IFOPDSX0000000I<CR><LF>
VARIABLE_LENGTH Example CCSD3ZF000010000000INJPL3IFOPDSX0000000I

UNDEFINED Example CCSD3ZF000010000000INJPL3IFOPDSX0000000I<CR><LF>

Chapter 16. SFDU Usage 16-5

The remainder of the PDS label begins on the next line or record. The last line of the PDS label
contains the END statement. Then, if the PDS Label is attached, the data object begins on the
next record. If the PDS label is detached, the END statement is the last line of the file.

16.2 The ZKI SFDU Organization

Any PDS data products packaged as SFDUs that are required to pass through the AMMOS
project database as part of an active mission must use the following SFDU organization. All data
products of this type are assumed to have attached PDS labels.

Each instance of a data product (file) in a data set must include four (and only four) SFDU

labels. These are: the Z Class SFDU label; the K Class SFDU label; the End-Marker label for the
K Class SFDU; and the | Class SFDU label. The Z and K Class SFDU labels are concatenated
(i.e., Z, then K) and left justified in the first line or record of the PDS label for each data product.
The End-Marker for the K Class SFDU label and the | Class SFDU label are right justified on the
last record of the PDS label (following the END statement). See Figure 16.4.

Z K##
PDS LABEL
FILE END EOK | 1
DATA OBJECT
EOF

Figure 16.4: PDS Label Example for AMMOS compatible products

The first SFDU label must be a Z Class Version 3 SFDU label. The Z Class indicates that the
value field (everything after the first 20 bytes) is an aggregation. In this case, the aggregation
consists of a K Class (PDS label) and an I Class (data object) SFDU. This label also indicates
that the delimiter type is End-of-File and that this SFDU (data product) is terminated by a single
End-of-File. It is formed as follows:

1) Control Authority CCSD
2) Version ID 3
3) Class ID Z
4) Delimiter Type F
5) Spare 0

6) Description Data Unit ID 0001
7) Length Field 00000001

16-6 Chapter 16. SFDU Usage

Example: CCSD3ZF000010000000I

The second SFDU label must be a K Class Version 3 SFDU label. “Class K” indicates that the
value field (everything after the second 20 bytes) is catalog and directory information, i.e., the
PDS label (sometimes referred to as the K Header). The Data Description Unit ID of PDSX
indicates that the PDS label uses the Object Description Language (ODL) syntax and the
Planetary Science Data Dictionary semantics to present data descriptive information. The SFDU
label also indicates that the SFDU is delimited by a Start-Marker/End-Marker pair. It is formed
as follows:

1) Control Authority ID NJPL

2) Version ID 3

3) Class ID K

4) Delimiter Type S

5) Spare 0

6) Description Data Unit ID PDSX

7) Length Field ##Emark##

The marker pattern (“##mark##” in the example) can be set to any string that is unlikely to be
repeated elsewhere in the data product.

Example: NJPL3KSOPDSX##mark##

The two SFDU labels must be concatenated and left justified in the first line or record of the PDS
label. Note that there are no characters between the two SFDU labels. For data products with
RECORD_TYPE equal to VARIABLE_LENGTH, the two concatenated SFDU labels must not
be followed by <CR><LF>.

Example: CCSD3ZF000010000000INJPL3KSOPDSX##mark##

The remainder of the PDS label begins on the next line. The last line of the PDS label contains
the END statement. Then, in the same line or record, right justified, is the End-Marker for the K
Class SFDU and the | Class SFDU label. The End-Marker pattern must appear as:

Example: CCSD$$MARKER##mark##

Note that the start marker and the end marker fields must be identical within the SFDU (in the
example, “##mark##”). Next must be an I Class Version 3 SFDU label. “Class I” indicates that
the value field (everything after the SFDU label) is application data, i.e., the data object. The
Data Description Unit ID varies by data product type. It is supplied by the JPL Control Authority
and is usually documented in the science data product Software Interface Specifications (SIS).
The SFDU label also indicates that the SFDU will be terminated by a single End-of-File. It is
formed as follows:

Chapter 16. SFDU Usage 16-7

1) Control Authority ID NJPL
2) Version ID 3
3) Class ID I
4) Delimiter Type F
5) Spare 0
6) Description Data Unit ID XXXX
7) Length Field 00000001
Example: NJPL3IF001060000000I (where XXXX has been replaced by 0106.)

The two SFDU labels must be concatenated, right justified, and appear in the last line or record
of the PDS label following the END statement. (If it happens that there are not 40 bytes left in
the last record of the PDS label, add an additional record and right justify the two SFDU labels.)
Note that there are no characters between the two SFDU labels, and that the marker pattern and |
Class SFDU Labels are transparent to PDS label processing software.

Example: END CCSD$$SMARKER##mark##NJPL3I1F001060000000I

The data object begins with the next physical record.

16.3 Examples

RECORD_TYPE = STREAM:
End Statement blank(s) End marker | Class SFDU End of record

END CCSD$$MARKER##mark##NJPL31F0010600000001<CR><LF>

RECORD_TYPE = FIXED_LENGTH:
End Statement Terminator Record Boundary

END <CR><LF> bbbbb CCSD$$MARKER##mark##NJPL3IF0010600000001

RECORD_TYPE = UNDEFINED:
Statement terminator

End Statement i
END<CR><LF> CCSD$$MARKER##mark##NJPL31F0010600000001

16-8 Chapter 16. SFDU Usage

RECORD_TYPE = VARIABLE _LENGTH:
Record Length END end of statement

END CCSD$$MARKER##mark##NJPL31F0010600000001

16.4 Exceptions to this Standard
Software files and document files should not be packaged as SFDUs.

Previous versions of the PDS standards expressed the ZI SFDU labels as an ODL statement. The
Z1 SFDU labels were followed by “= SFDU_LABEL”.

Example: CCSD3ZF0000100000001NJPL3IFOPDSX00000001 = SFDU_LABEL

Chapter 17. Usage of N/A, UNK, and NULL 17-1

Chapter 17. Usage of N/A, UNK and NULL

17.1 Interpretation of N/A, UNK, and NULL

During the completion of data product labels or catalog files, one or more values may not be
available for some set of required data elements. In this case PDS provides the symbolic literals
“N/A”, “UNK”, and “NULL”, each of which is appropriate under different circumstances.

17.1.1 N/A

“N/A” (“Not Applicable”) indicates that the values within the domain of this data element are
not applicable in this instance. For example, a data set catalog file describing NAIF SPK kernels
would contain the line:

INSTRUMENT ID = "N/A"
because this data set is not associated with a particular instrument.

“N/A” may be used as needed for data elements of any type (i.e., text, date, numeric, etc.).

17.1.2 UNK

“UNK” (“Unknown”) indicates that the value for the data element is not known and never will
be. For example, in a data set comprising a series of images, each taken with a different filter,
one of the labels might contain the line:

FILTER NAME = "UNK"

if the observing log recording the filter name was lost or destroyed and the name of the filter is
not otherwise recoverable.

“UNK” may be used as needed for data elements of any type.

17.1.3 NULL

“NULL” is used to flag values that are temporarily unknown. It indicates that the data preparer
recognizes that a specific value should be applied, but that the true value was not readily
available. “NULL” is a placeholder. For example, the line:

DATA SET RELEASE DATE = "NULL"

might be used in a data set catalog file during the development and review process to indicate
that the release date has not yet been determined.

17-2 Chapter 17. Usage of N/A, UNK, and NULL

Note that all “NULL” indicators should be replaced by their actual values prior to final archiving
of the associated data.

17.2 Implementation Recommendations for N/A, UNK, and NULL

The figurative constants defined above require special values for storage in data base systems.
The PDS has the following recommendations for software intended to support PDS labels and
catalog objects:

1. Inthe case of character fields, the explicit string can be stored in the corresponding data
elements without further modification. This approach can also be taken where date and
time data types are stored as strings.

2. Numeric fields require special flag values to represent the “N/A”, “NULL” and “UNK”
indicators. Table 17.1 provides suggested standard flag values for each case.

In creating index files based on element values extracted from PDS labels, there are two options
for dealing with “N/A”, “NULL”, and “UNK” in non-string columns:

1. The character strings can be used explicitly in the index. Note, however, that in this case
the DATA_TYPE of the column may be forced to “CHARACTER?”, since, for example,
encountering the string “NULL” in what is otherwise a numeric column would cause a
read failure.

2. The character strings can be replaced with an appropriate numeric constant. In this case
the substitution is indicated in the corresponding column definition by including the
NOT_APPLICABLE_CONSTANT, NULL_CONSTANT or UNKNOWN_CONSTANT
elements as needed.

Table 17.1: Numeric values for N/A, UNK, NULL

Signed Signed Unsigned Unsigned Tiny Integer Real

Integer Integer Integer Integer (1 byte -

(4 byte) (2 byte) (4 byte) (2 byte) unsigned)
N/A -2147483648 || -32768 4294967293 | 65533 locally defined -1.E32
UNK 2147483647 || 32767 4294967294 | 65534 locally defined +1.E32
NULL NULL* NULL* NULL* NULL* NULL* NULL*

e “NULL" refers to a system-defined null value. The availability of NULL as a universal value across data
types in some data management systems simplifies the implementation of the figurative constant "NULL".
However, if a system "null" is not available, then either a) an arbitrary value can be chosen, or b) the

Chapter 17. Usage of N/A, UNK, and NULL 17-3

meanings of UNK and NULL can be combined and the token or numeric representation of UNK used.

17-4 Chapter 17. Usage of N/A, UNK, and NULL

(This page intentionally left blank.)

Chapter 18. Units of Measurement 18-1

Chapter 18. Units of Measurement

The uniform use of units of measure facilitates broad catalog searches across archive
systems.The PDS standard system for units, where applicable, is the Systeme Internationale
d'Unites (SI). The default units for data elements in the Planetary Science Data Dictionary
(PSDD) are determined as each element is defined and added to the dictionary. Specific unit
definitions are also included in the PSDD.

In cases where more than one type of unit is commonly used for a given data element, an
additional data element is provided to explicitly identify the corresponding unit.
SAMPLING_PARAMETER_RESOLUTION and SAMPLING_PARAMETER_UNIT are one
such pair. The PDS allows exceptions to the SI unit requirement when common usage conflicts
with the Sl standard (e.g., angles which are measured in degrees rather than radians).

Both singular and plural unit names, as well as unit symbols, are allowed. The double asterisk
(**) is used, rather than the caret ("), to indicate exponentiation. When the units associated with
a value of a PDS element are not the same as the default units specified in the PSDD (or when
explicit units are preferred), a unit expression is used with the value. These unit expressions are
enclosed in angular brackets (< >) and follow the value to which they apply.

Examples

EXPOSURE_DURATION
DECLINATION

MASS

MASS DENSITY
MAP_RESOLUTION
MAP_SCALE

10 <SECONDS>
-14.2756 <DEGREES>
123 <kg>

123 <g/cm**3>

123 <PIXEL/DEGREE>
123 <KM/PIXEL>

Note that in the above example, MASS_DENSITY is not expressed in the Sl default unit of
measurement for density (kg/m**3).

PDS recommends (in order of preference) that measurements be expressed using the default Si
units of measurements, as defined in the following paragraphs. If it is not desirable to use the
default SI unit of measurement, then the unit of measurement should be expressed using the Sl
nomenclature defined in the following paragraphs. If a unit of measurement is not defined by the
Sl standard, then a unit of measurement can be derived (e.g., pixels per degree, kilometers per
pixel, etc.).

18.1 SI Units

The following summary of Sl unit information is extracted from The International System of
Units.

Base units — As the system is currently used, there are seven fundamental SI units, termed “base

18-2 Chapter 18. Units of Measurement

units”:
QUANTITY NAME OF UNIT SYMBOL
length meter m
mass kilogram kg
time second S
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

Sl units are all written in mixed case; symbols are also mixed case except for those derived from
proper names. No periods are used in any of the symbols in the international system.

Derived units — In addition to the base units of the system, a host of derived units, which stem
from the base units, are also employed. One class of these is formed by adding a prefix,
representing a power of ten, to the base unit. For example, a kilometer is equal to 1,000 meters,
and a millisecond is .001 (that is, 1/1,000) second. The prefixes in current use are as follows:

SI PREFIXES
Factor Prefix Symbol Factor Prefix Symbol
10**18 exa E 10**-1 deci d
10**15 peta P 10**-2 centi c
10**12 tera T 10**-3 milli m
10**9 giga G 10**-6 micro
10**6 mega M 10**-9 nano n
10**3 kilo k 10**-12 pico p
10**2 hecto h 10**-15 femto f
10**1 deka da 10**-18 atto a

Note that the kilogram (rather than the gram) was selected as the base unit for mass for historical
reasons. Notwithstanding, the gram is the basis for creating mass units by addition of prefixes.

Another class of derived units consists of powers of base units and of base units in algebraic
relationships. Some of the more familiar of these are the following:

QUANTITY NAME OF UNIT SYMBOL
area square meter m**2
volume cubic meter m**3
density kilogram per cubic meter kg/m**3
velocity meter per second m/s
angular velocity radian per second rad/s

acceleration meter per second squared m/s**2

Chapter 18. Units of Measurement

18-3

angular acceleration radian per second squared rad/s**2
kinematic viscosity square meter per second m**2/s
dynamic viscosity newton-second per square meter N*s/m**2
luminance candela per square meter cd/m**2
wave number 1 per meter m**-1
activity (of a radioactive source) 1 per second s**.1
Many derived Sl units have names of their own:
QUANTITY NAME OF UNIT SYMBOL EQUIVALENT
frequency hertz Hz s**.1
force newton N kg*m/s**2
pressure (mechanical stress) pascal Pa N/m**2
work, energy, quantity of heat joule J N*m
power watt W JIs
quantity of electricity potential difference coulomb C A*s
electromotive force volt \% WIA
electrical resistance ohm - VIA
capacitance farad F A*s/\V
magnetic flux weber Whb V*s
inductance henry H V*s/A
magnetic flux density tesla T Wh/m**2
luminous flux lumen Im cd*sr
illuminance lux Ix Im/m**2
Supplementary units are as follows:
QUANTITY NAME OF UNIT SYMBOL
plane angle radian rad
solid angle steradian sr

Use of figures with SI units — In the international system it is considered preferable to use only
numbers between 0.1 and 1,000 in expressing the quantity associated with any Sl unit. Thus the
quantity 12,000 meters is expressed as “12 km”, not “12,000 m”. So too, 0.003 cubic centimeters
is preferably written “3 mm®”, not “0.003 cm®”.

18-4 Chapter 18. Units of Measurement

(This page intentionally left blank.)

Chapter 19. Volume Organization and Naming 19-1

Chapter 19. Volume Organization and Naming

The Volume Organization and Naming Standard defines the organization of data sets onto
physical media and the conventions for forming volume names and identifiers. A volume is one
unit of a physical medium such as a CD, a DVD, or a magnetic tape. Data sets may reside on one
or more volumes and multiple data sets may also be stored on a single volume. Volumes are
grouped into volume sets.

Each volume has a directory structure containing subdirectories and files. Both random access
(CD, DVD) and sequential access (magnetic tape) media are supported. A PDS volume on a
sequential access medium has a virtual directory structure defined in the VOLUME object
included in the file “VVOLDESC.CAT”. This virtual structure may then be used to recreate the
volume directory structure when the files are moved to a random access medium.

PDS recommends that the entire contents of an archive volume and volume set be based on a
single version of the PDS Standards Reference. Software tools that work with one version of the
Standards may not work with all versions.

19.1 Volume Set Types

Data may be organized into one of four types of archive volumes, based on the number of data
sets on each volume and the number of volumes required to capture all the data. The directory
organization of the volumes and the required files varies slightly depending on this volume type.
Figures 19.1 through 19.4 depict the various volume directory structure options. The four volume
types are described below.

1. One data set on one volume. This basic volume organization is illustrated in Figure 19.1.
The required and optional files and directories are detailed in Section 19.3.

2. One data set on many volumes. In this case the INDEX subdirectory includes both local
indices, for the data on the present volume, and cumulative indices, for the data on all
(preceding) volumes. This layout is illustrated in Figure 19.2.

3. Many data sets on one volume. In this case, additional file naming conventions are
imposed to prevent collisions; data subdirectories are organized by data set. There are
two variations on this scheme:

a. One logical volume — That is, the data sets collected on the physical medium
constitute a single logical volume and would generally be distributed together.
See Figures 19.3a and 19.3b, and Section 19.6 for more information on logical
volumes.

b. Many logical volumes — and The physical medium contains several largely
independent collections of data sets, with each collection organized as though it
were on its own volume. This is useful when a larger capacity medium (say,
DVD) is being used to hold several volumes originally produced on a smaller

19-2 Chapter 19. Volume Organization and Naming

capacity medium (e.g., CD-ROM). In this case, directories that are common to
and identical on all volumes need only be reproduced once (e.g., the SOFTWARE
directory in Figure 19.3b). See Figures 19.3a and 19.3b, and Section 19.6 for
more information on logical volumes.

4. Many data sets on many volumes. This organization is most useful when several large
data sets are being produced in parallel over an extended period of time (as with some
space missions). Sections of each data set appear on each physical volume, requiring
additional naming considerations. See Figure 19.4 for more information.

Note that it is possible to have one or more volumes containing only data accompanied by an
ancillary volume containing the DOCUMENT, CATALOG, GAZETTER, SOFTWARE,
CALIB, and GEOMETRY directories relevant to all the other volumes. When this is done, the
PDS requires that all files referenced by include-type pointers (see the Pointer Usage chapter in
this document) be present on the data volume. The PDS recommends that ancillary files be
archived on the same volume as the corresponding data wherever possible, to facilitate science
access.

The contents and organization of the directories of all the volume types are described in the
remainder of this chapter.

Chapter 19. Volume Organization and Naming 19-3
VOLUME SET ORGANIZATION STANDARD
ONE DATA SET, ONE VOLUME
ROOT
ARREADME.TXT
ERRATA.TXT*
VOLDESC.CAT
DOCUMENT CATALOG LABEL SOFTWARE CALIB GEOMETRY INDEX DATA EXTRAS
DOCINFO.TXT CATINFO.TXT | AgINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT INDXINFO.TXT ~ LABELFILE1 |
CATALOG.CAT** |NCLUDE FILE 1 INDEX.LBL DATAFILE 1 EXTRINFO.TXT
MISSION.CAT INDEX.TAB LABEL FILE 2
INSTHOST AT INCLUDE FILE 2 DATA FILE 2
INST.CAT LABELED DATA FILE 1
DATASET.CAT LABELED DATA FILE 2
PERSON.CAT LABELED DATA FILE 3
REF.CAT INCLUDE FILE 1*
INCLUDE FILE 2 *

xxxxINFO.TXT Required for each non-data subdirectory if present
* Optional
** Individual catalog files are preferred, or they may be combined in a single CATALOG.CAT file.

Figure 19.1 Volume Set Organization Standard - One Data Set, One Volume

19-4 Chapter 19. Volume Organization and Naming

VOLUME SET ORGANIZATION STANDARD
ONE DATA SET, MANY VOLUMES

ROOT

ARREADME.TXT

ERRATA.TXT*

VOLDESC.CAT

DOCUMENT CATALOG LABEL SOFTWARE CAL||B GEOMETRY IND!|EX DATA 1 DATA 2
CATINFO.TXT |ABINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT LABEL FILE 1
DOCINFO.TXT CATALOG.CAT** INCLUDE FILE 1 DATA FILE 1

MISSION.CAT \NCLUDE FILE 2 LABEL FILE 2
INSTHOST.CAT DATAFILE 2
INST.CAT LABELED DATAFILE 1
DATASET.CAT LABELED DATAFILE 2
PERSON.CAT LABELED DATAFILE 3
REF.CAT INCLUDE FILE 1 *

INCLUDE FILE 2 *

xxxxINFO.TXT Required for each non-data subdirectory if present
* Optional
** Individual catalog files are preferred, or they may be combined in a single CATALOG.CAT file.

Figure 19.2 Volume Set Organization Standard - One Data Set, Many Volumes

Chapter 19. Volume Organization and Naming 19-5

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, ONE VOLUME

ROOT
ARREADME.TXT
ERRATA.TXT*
VOLDESC.CAT
| | | | | | DATASET 1 EXTRAS
DOCUMENT CATALOG LABEL SOFTWIARE CALIB GEOMETRY INDEX
DOCINFO.TXT ~ CATINFO.TXT | ABINFO.TXT SOFTINFO.TXT ~ CALINFO.TXT GEOMINFO.TXT ~ INDXINFO.TXT
a?sT QB?VGC%T axxTABLE.FMT axxCALIB.TAB axxINDEX.LBL
: : bxxCALIB.TAB | axxINDEX.TAB
INSTHOST CAT DXXTABLE.FMT xx bxINDEX LBL
o bxxINDEX.TAB
XX o
bxxDS. AT EXTRINFO.TXT
PERSON.CAT I
REF.CAT DATA 11 DATA 12
LABEL FILE 1
DATA FILE 1
LABEL FILE 2
xxxxINFO.TXT Required for each non-data subdirectory if present DATAFILE 2
* Optional LABELD DATA FILE 1
** Individual catalog files are preferred, or they may be combined in a single CATALOG.CAT file. LABELED DATA FILE 2

LABELED DATA FILE 3
INCLUDE FILE 1
INCLUDE FILE 2

Figure 19.3a Volume Set Organization Standard - Many Data Sets, One Volume

19-6 Chapter 19. Volume Organization and Naming

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, ONE PHYSICAL VOLUME,
MANY LOGICAL VOLUMES

ROOT
ARREADME.TXT
ERRATA.TXT*
VOLDESC.CAT
DATASET 1 ** DATASETn** SOFTWARE ***
SOFTINFO.TXT
AAREADME.TXT AAREADME.TXT ETC.
VOLDESC.CAT VOLDESC.CAT
ERRATA.TXT* ERRATA.TXT*
| CATALOG LABEL SOFTWARE GEOMETRY —
DOCUMENT
CALIB INDEX EXTRAS
DOCUMENT LABEL | CALIB .N[!Ex EXTRAS
CATALOG SOFTWARE GEOMETRY DATA
* Optional

** Logical volume; directory structure identical to Figure 19.1, ONE DATA SET, ONE VOLUME
*** Common to all logical volumes

Figure 19.3b Volume Set Organization Standard - Many Data Sets, One Physical Volume,
Many Logical Volumes

Chapter 19. Volume Organization and Naming 19-7

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, MANY VOLUMES

ROOT
ARREADME.TXT
ERRATA.TXT*
VOLDESC.CAT
’ ’ | | | | DATASET EXTRAS
DOCUMENT CATALOG LABEL SOFTW|ARE CALIB GEOMETRY INDEX
DOCINFO.TXT CATINFO.TXT LABINFO.TXT SOFTINFO.TXT ~CALINFO.TXT GEOMINFO.TXT INDEXINFO.TXT
CATALOG.CAT*" axxTABLE.FMT1 axxCALIB.TAB axxINDEX.LBL
MISSION.CAT . xTABLE.FMT1 bxxCALIB.TAB | axxINDEX.TAB
INSTHOST.CAT axxCMIDX.LBL
|ngé:é;T axxCMIDX.TAB
axxDS. bxxINDEX.LBL EXTRINFO.TXT
bxxDS.CAT bxxINDEX.TAB
PERSON.CAT bxxCMIDX.LBL |
REF.CAT bxxCMIDX.TAB DATA 11 DATA2
LABEL FILE 1
DATAFILE 1
LABEL FILE 2
xxxxINFO.TXT Required for each non-data subdirectory if present DATA FILE 2
* Optional LABELD DATA FILE 1
** Individual catalog files are preferred, or they may be combined in a single CATALOG.CAT file. LABELED DATAFILE 2
LABELED DATA FILE 3
INCLUDE FILE 1

INCLUDE FILE 2

Figure 19.4 Volume Set Organization Standard - Many Data Sets, Many Volumes

19.2 Volume Organization Guidelines

The PDS recommends that directory structures be simple, path names short, and directory and
file names constructed in a logical manner. When determining the number of files to be stored in
each subdirectory, data preparers should keep in mind that most users rely on visual inspection to
glean the contents of a directory or confirm that a disk is intact. Note that some older operating
systems will “crash” when encountering a directory containing more than 128 files. Note also
that device load time can be directly dependent on the number of files in a directory, making
large directories inconvenient for large numbers of users. The typical practical limit for these
purposes is on the order of 100 files per directory. As a further convenience to users, PDS
recommends that empty subdirectories be omitted entirely.

19.3 Description of Directory Contents and Organization

The root directory is the top-level directory of a volume. The following sections describe the
contents of the root directory, followed by the contents of the required subdirectories (in
alphabetical order), and finally the contents of the optional directories (in alphabetical order).

19-8 Chapter 19. Volume Organization and Naming

19.3.1 ROOT Directory Files
AAREADME.TXT Required

This file contains an overview of the contents and organization of the associated volume, general
instructions for its use, and contact information. The name has been chosen so that it will be
listed first in an alphabetical directory listing. See Appendix D for an example of an
AAREADME.TXT file.

VOLDESC.CAT Required

This file contains the VOLUME object, which gives a high-level description of the contents of
the volume.

ERRATA.TXT Optional

This file identifies and describes errors and/or anomalies found in the current volume, and
possibly in previous volumes of a set. When a volume contains known errors they must be
documented in this file.

VOLDESC.SFD Obsolete

This file is identified here only for backward compatibility with previous versions of the PDS
standards. It is not to be used in current archive products.

This file contains the SFDU reference object structure that aggregates the separate file contents
of the volume into an SFDU. The reference object itself is expressed in ODL. This file should
only be included if the data products are packaged as SFDUs. (Note the “.SFD” file extension is
a reserved file extension in the CCSDS SFDU standard indicating the file contains a valid
SFDU.)

19.3.2 Required Subdirectories

19.3.2.1 CATALOG Subdirectory

This subdirectory contains the catalog object files (for the mission, instrument, data sets, etc.) for
the entire volume. When several logical volumes are present on a single physical volume, each
logical volume should have its own CATALOG subdirectory.

CATINFO.TXT Required
This file identifies and describes the function of each file in the CATALOG subdirectory.

CATALOG.CAT Optional

Chapter 19. Volume Organization and Naming 19-9

In most cases, the individual catalog objects are in separate files, one for each object. On some
older archive volumes, however, all catalog objects were collected into a single file called
CATALOG.CAT.

PDS Methodology for Supplying Catalog Objects

The preferred method for supplying catalog objects is as separate files for each catalog object,
since this facilitates the review, verification and archiving process. In Figure 19.5, for example,
the files axxxxxDS.CAT and bxxxxxDS.CAT represent two separate files each containing single
data set catalog objects (descriptive information about the data set) for data sets a and b
respectively. See the File Specification and Naming chapter in this document for the file naming
rules; see Section A.5, CATALOG, for the required contents of the catalog object, and see
Appendix B for information on each of the referenced catalog objects.

When catalog objects are organized in separate files or sets of files, pointer expressions shall be
constructed according to the following table. Under "File Name", the first line shows the file
name to be used if a single catalog file is present on the volume for the particular type of catalog
object named. The second shows the syntax and file name convention to be followed if multiple
catalog files are present for the named object.

Catalog Pointer Name File Name

ADATA_SET_CATALOG = "DATASET.CAT"

= {"xxxxxxDS.CAT","yyyyyyDS.CAT"}
ADATA_SET_COLLECTION_CATALOG = "DSCOLL.CAT"

= {"xxxxxDSC.CAT","yyyyyDSC.CAT"}
ADATA_SET_MAP_PROJECTION_CATALOG = "DSMAP.CAT"

= {"xxxDSMAP.CAT","yyyDSMAP.CAT"}
AINSTRUMENT_CATALOG = "INST.CAT"

= {"xxxxINST.CAT","yyyyINST.CAT"}
AINSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"

= {"xxxxHOST.CAT","yyyyHOST.CAT"}
AMISSION_CATALOG = "MISSION.CAT"

= {"xxxxxMSN.CAT","yyyyyMSN.CAT"}
"PERSONNEL_CATALOG = "PERSON.CAT"

= {"xxxxPERS.CAT,"yyyyPERS.CAT"}
"REFERENCE_CATALOG = "REF.CAT"

= {"xxxxxREF.CAT","yyyyyREF.CAT"}
ASOFTWARE_CATALOG = "SOFTWARE.CAT"

= {"xXxxSW.CAT", "yyySW.CAT"}
ATARGET_CATALOG = "TARGET.CAT"

{"xxxTGT.CAT", "yyyTGT.CAT"}

19.3.2.2 Data Subdirectory

The DATA subdirectory may be used to unclutter the root directory of a volume by providing a
single entry point to multiple data subdirectories. These directories contain the data product files.
The directories are organized and named according to the standards in Chapter 8, Directory
Types and Naming, in this document. Subdirectories may be nested up to eight levels deep on a
physical volume.

19-10 Chapter 19. Volume Organization and Naming

Data Files

A data file contains one or more data objects, which is a grouping of data resulting from a
scientific observation (such as an image or table) and representing the measured instrument
parameters.

Label Files

A label file contains a detached PDS label that identifies, describes, and defines the structure of

the data objects. The associated data objects are contained in an accompanying data file. The
label file must have the same base name as the associated data file, with an extension of “.LBL”.

Labeled Data Files
PDS labels may be attached directly to the data they describe. In this case the PDS label comes
first and the data begin immediately following the end of the label. When attached labels are

used, no “.LBL” files will be present in the data directories. See the Data Products and Data
Product Labels chapters in this manual for details.

19.3.2.3 INDEX Subdirectory

This directory contains the indices for all data products on the volume,

Note: If the physical volume is organized as several logical volumes (case 3b of Section 19-1),
there will generally not be an INDEX subdirectory at the root of the physical volume. Instead
there will be individual INDEX subdirectories at the root of each logical volume. See Section
A.20, INDEX_TABLE, for more information.

INDXINFO.TXT Required

This file identifies and describes the function of each file in the INDEX subdirectory. This
description should include at least:

1) A description of the structure and contents of each index table in this subdirectory

2) Usage notes
For an example of the INDXINFO.TXT file, see Appendix D, Section D.2.
INDEX.LBL Required
This is the PDS label for the volume index file, INDEX.TAB. The INDEX_TABLE specific

object should be used to identify and describe the columns of the index table. See Appendix A for
an example. Although INDEX.LBL is the preferred name for this file, the name axxINDEX.LBL

Chapter 19. Volume Organization and Naming 19-11

may also be used (with axx replaced by an appropriate mnemonic).

Note: The PDS recommends detached labels for index tables. If an attached label is used, this file
is omitted.

INDEX.TAB Required

This file contains the volume index in tabular format (i.e., the INDEX_TABLE specific object is
used to identify and describe the data stored on an archive volume). Only data product label files
(i.e., not the data files) are included in an index table. In rare cases, however, ancillary files are
also included. Although INDEX.TAB is the preferred name for this file, the name
axxINDEX.TAB may also be used, with axx replaced by an appropriate mnemonic.

Note that the axx prefix is neither required nor recommended. Data producers may use a prefix to
distinguish two or more files by data set, instrument, or other criteria. The data producer should
replace the generic prefixes shown here with a suitable mnemonic.

The following files are recommended for multi-volume sets:
CUMINDEX.LBL Optional

This file contains the cumulative volume set index in tabular format (i.e., the INDEX_TABLE
specific object is used to identify and describe the data stored on each archive volume). Only
data product label files (i.e., not the data files) are included in an index table. In rare cases,
however, ancillary files may be included. Although CUMINDEX.LBL is the preferred name for
this file, the name axxCMIDX.LBL may also be used, with axx replaced by an appropriate
mnemonic.

PDS recommends the use of detached labels for index tables. If an attached label is used, this file
is omitted.

CUMINDEX.TAB Optional

This file contains the cumulative volume set index in a tabular format. Normally only data files
are included in a cumulative index table. In some cases, however, ancillary files may be
included. Although CUMINDEX.TAB is the preferred name for this file, the name
axxCMIDX.TAB may also be used, with axx replaced by an appropriate mnemonic.

19.3.3 Optional Subdirectories

19.3.3.1 CALIBration Subdirectory

This directory contains the calibration files used in the processing of the raw data or needed to
use the data products on the volume. Note that “CALIB” is only a recommended name - a
different directory name may be used if appropriate.

19-12 Chapter 19. Volume Organization and Naming

CALINFO.TXT Required
This file identifies and describes the function of each file in the CALIB subdirectory.
Calibration Files Required

In Figures 19.3 and 19.5, the files axxCALIB.TAB and bxxCALIB.TAB represent sample files.
The axx and bxx prefixes indicate that the calibration files for different data sets (a and b) may be
combined in the same CALIB subdirectory.

Note that the axx and bxx prefixes in the sample names are neither required nor recommended.
Data producers may use them to distinguish two or more files (by data set, instrument, or other
criteria). Also, in this case the “CALIB” file name is not required. It is used in the figures to
differentiate calibration files from observational data files. The data producer should replace the
generic file names shown here by suitably mnemonic names.

19.3.3.2 DOCUMENT Subdirectory

This directory contains the files that provide documentation and supplementary and ancillary
information to assist in understanding and using the data products on the volume. The
documentation may describe the mission, spacecraft, instrument, and data set(s). It may include
references to science papers published elsewhere as well an entire papers republished on the
volume. See Section A.12, DOCUMENT, for more information.

DOCINFO.TXT Required

This file identifies and describes the function of each file in the DOCUMENT subdirectory.

VOLINFO.TXT Optional

This file describes the attributes and contents of the volume. This file is sometimes included in
addition to the catalog files in the CATALOG subdirectory to provide the same information in an
alternate format.

Note: In rare cases, the data engineer may allow the data preparer to place all the corresponding
catalog object descriptions in the VOLINFO.TXT file of the DOCUMENT subdirectory in lieu
of separate files in the CATALOG subdirectory. Regardless of which method is used, the
descriptions themselves must always be supplied.

Data Dictionary Files Optional

The data dictionary files are comprised of two files, PDSDD.FUL and PDSDD.IDX. The
PDSDD.FUL file identifies and describes the data object and data element definitions contained

Chapter 19. Volume Organization and Naming 19-13

in the Planetary Science Data Dictionary (PSDD). The PDSDD.IDX is an index of the
PDSDD.FUL and is currently used by the PDS validation tools to quickly locate individual
elements in the PSDD.

These files are human-readable ASCII text and are useful for (future) users to ascertain the data
object and data element definitions used within the PDS at the time that the archive product was
produced.

The above files are required if locally-defined data elements are used in the archive product, and
are recommended if the archive product does not use locally-defined data elements.

The PDSDD.FUL and PDSDD.IDX files can be labeled using either the TEXT or
ASCII_DOCUMENT objects.

Example: PDSDD.LBL

PDS_VERSION_ ID = PDS3
RECORD_TYPE = STREAM
~FUL_TEXT = "PDSDD.FUL"
~IDX_TEXT = "PDSDD.IDX"
OBJECT = FUL_TEXT

PUBLICATION DATE = 2003-12-31
END_OBJECT = FUL_TEXT
OBJECT = IDX_TEXT

PUBLICATION DATE = 2003-12-31
END_OBJECT = IDX_TEXT
END

19.3.3.3 EXTRAS Subdirectory

The EXTRAS directory is the designated area for housing additional elements provided by data
preparers beyond the scope of the PDS archive requirements. Examples include HTML-based
disk navigators, educational and public interest aids, and other useful but nonessential items.
The PDS places no restrictions on the contents and organization of this subdirectory other than
conformance to 1SO-9660/UDF standards.

EXTRINFO.TXT Required

This file identifies and describes the function of each file in the EXTRAS subdirectory. This
description should include at least the following:

1. A description of the structure and contents of each file in the subdirectory

2. Usage notes

19-14 Chapter 19. Volume Organization and Naming

19.3.34 GAZETTER Subdirectory

This directory contains detailed information about all the named features on a target body (i.e.,
the gazetteer information) associated with the data sets on the volumes. “Named features” are
those the International Astronomical Union (IAU) has named and approved. See Section A.15,
GAZETTER_TABLE, for more information.

GAZINFO.TXT Required
This file identifies and describes the function of each file in the GAZETTER subdirectory.
GAZETTER.TXT Required

This file contains text describing the structure and contents of the gazetteer table in
GAZETTER.TAB.

GAZETTER.LBL Required
This file is the PDS label containing a formal description of the structure of the gazetteer table.
GAZETTER.TAB Required
This file contains the gazetteer table.

19.3.3.5 GEOMETRY Subdirectory

This directory contains the files (e.g., SEDR file, SPICE kernels, etc.) needed to describe the
observation geometry for the data. Note that “GEOMETRY” is only a recommended directory
name, another appropriate name may be used.

GEOMINFO.TXT Required

This file identifies and describes the function of each file in the GEOMETRY subdirectory.

19.3.3.6 LABEL Subdirectory

This directory contains additional PDS labels and include files that were not packaged with the
data products or in the data subdirectories. When multiple logical volumes reside on a single
physical volume, the LABEL subdirectories must appear below the logical volume root
directories. This is because the rules governing pointer resolution preclude a search across
logical volumes.

LABINFO.TXT Required
This file identifies and describes the function of each file in the LABEL subdirectory.

Include Files Required

Chapter 19. Volume Organization and Naming 19-15

Include files are files referenced by a pointer in a PDS label. Typically they contain additional
metadata or descriptive information. Only files of type LBL, TXT, or FMT (“format”) may be
included in the LABEL subdirectory. In Figures 19.1-5, the files axxINCLUDE FILE1,
bxxINCLUDE FILE1 and INCLUDE FILE1 represent sample files of the above types. The axx
and bxx prefixes indicate that the include files for different data sets (a and b) may be combined
in the same LABEL subdirectory.

Note that the axx and bxx prefixes in the sample names are neither required nor recommended.
Data producers may use them to distinguish two or more files (by data set, instrument, or other
criteria). The data producer should replace the generic prefixes shown here by a suitable
mnemonic.

19.3.3.7 SOFTWARE Subdirectory

This directory contains the software libraries, utilities, or application programs supplied for
accessing or processing the data. It may also include descriptions of processing algorithms. Only
public domain software may be included on PDS archive volumes.

Two subdirectory structures are available for organizing the SOFTWARE directory: platform-
based and application-based. Platform-based is the recommended method for general archives
and is described below. For an example of application-based organization see the example for
SOFTINFO.TXT in Appendix D of this document, and the NAIF directory structure in Appendix
E. See Section 11.3 for information about packaging software for inclusion in an archive
product.

SOFTINFO.TXT Required
This file identifies and describes the function of each file in the SOFTWARE subdirectory.

SRC Subdirectory Optional
There can be a global SRC directory under the SOFTWARE directory if there is source code
applicable to all platforms. For example, application-programming languages such as IDL are
relatively platform independent and would be placed in a global SRC directory. Note that in the
example below, there is both a global source directory as well as source directories at the lower
levels.

DOC Subdirectory Optional
This directory contains documentation for the software in the parallel SRC directory.

LIB Subdirectory Optional

This directory contains libraries applicable to all platforms.

19-16 Chapter 19. Volume Organization and Naming

Hardware Platform and Operating System/Environment Subdirectories Optional

If only global source code is being provided on the volume, no further organization is required. If
platform- or environment- specific software is being provided, the structure in Figure 19.6
should be followed. Specifically:

1. The hardware platform and the operating system/environment must be explicitly stated.
If more than one operating system/environment (OS/Env) is supported for a single
hardware platform, each should have its own subdirectory under the hardware directory.
If there is only one, then that subdirectory can be promoted to the hardware directory
level (via naming conventions). In Figure 19.6, several environments are supported for
platform HW1, but only one for HW2 — thus the difference in subdirectory structures.

2. The next directory level contains BIN, SRC, DOC, LIB and OBJ. If any of these are not
applicable, it should be left out (i.e., empty directories should be omitted).

3. Following are examples of subdirectory names for both multiple and single OS/Env per
platform. (This list is provided for illustration only. It is not meant to be exhaustive.)

Multiple Single
PC
DOS PCDOS
WIN PCWIN
WINNT PCWINNT
0S2 PCOS2
MAC
SYs7 MACSYS7
AUX MACAUX
SUN
SUNOS SUNOS
SOLAR SUNSOLAR
VAX
VMS VAXVMS
ULTRX VAXULTRX
SGI
IRX4 SGIIRX4

IRX5 SGIIRX5

Chapter 19. Volume Organization and Naming 19-17

SOFTWARE

SOFTINFO.TXT

<HW1> <HW2> <SRC>* <DOC>*
| |
| | |]

<0sl> <0s2> <0s83> BIN SRC DOC LIB OBJ

BIN SRC DOC LIB OBJ

* NOTE: INFO.TXT files under SOFTWARE subdirectories are optional (e.g., PCINFO.TXT,
MACINFO.TXT, VAXINFO.TXT, SUNINFO.TXT, etc.).

Figure 19.6 — Platform-based SOFTWARE Subdirectory Structure

19.4 Volume Naming

Volume names must be no more than 60 characters in length and in upper case. They should
describe the contents of the volume in terms that a human user can understand. In most cases the
volume name is more specific than the volume set name. For example, the volume name for the
first volume in the VOYAGER IMAGES OF URANUS volume set is “VOLUME 1:
COMPRESSED IMAGES 24476.54 - 26439.58.”

19.4.1 Volume ID

Many types of media and the machines that read them place a limit on the length of the volume
ID. Therefore, although the complete volume set ID should be placed on the outside label of the
volume, a shorter version is actually used when the volume is recorded. PDS has adopted a limit
of 11 characters for these terse volume identifiers. This volume ID consists of the last two
components of the volume set ID, with the “X” wildcard values replaced by the sequence
number associated with the particular volume (see the Volume Set ID Standard below). This ID
must always be unique for PDS data volumes. The volume 1D must be in upper case.

Examples:
VVG_0002 Volume 2 of the VVoyager set
MG_0001 The first volume of the Magellan set

VGRS_0001 A potential Voyager Radio Science collection

19-18 Chapter 19. Volume Organization and Naming

If a volume is redone because of errors in the initial production the volume ID should remain the
same and the VOLUME_VERSION_ID incremented. This parameter is contained in the
VOLDESC.CAT file on the volume. The version ID should also be placed on the external
volume label as “Version n” where n indicates the revision number. A revision number greater
than one indicates that the original volume should be replaced with the new version.

19.5 Volume Set Naming

The volume set name provides the full, formal name of a group of data volumes containing one
or a collection of related data sets. Volume set names may be at most 60 characters in length and
must be in upper case. Volume sets are normally considered a single orderable entity. For
example, the volume series MISSION TO VENUS consists of the following volume sets:

MAGELLAN: THE MOSAIC IMAGE DATA RECORD
MAGELLAN: THE ALTIMETRY AND RADIOMETRY DATA RECORD
MAGELLAN: THE GLOBAL ALTIMETRY AND RADIOMETRY DATA RECORD

PRE-MAGELLAN RADAR AND GRAVITY DATA SET COLLECTION

In certain cases, the volume set name can be the same as the volume name, e.g., when the
volume set consists of only one volume.

19.5.1 Volume Set ID

A volume set is a series of archive volumes that are closely related. In general, the volumes of a
set will be distributed and used together. Each volume within the set must have a VOLUME_ID
that is unique across the PDS archive. The volume set is identified by a VOLUME_SET _ID of
up to 60 characters incorporating the range of constituent VOLUME_IDs. VOLUME_SET _IDs
must be in upper case, and are composed by concatenating the following fields, separated by
underscores, using abbreviations if necessary:

The country of origin (abbreviated)

The government branch

The discipline within the branch that is producing the volumes

A campaign, mission or spacecraft identifier followed by an optional instrument or
product identifier (6 characters)

5. A 4-digit sequence identifier: The first digit(s) represent the volume set; the
remaining digits contain “X”, representing the range of volumes in the set. Up to
four “X” characters may be used.

N =

Example

USA _NASA _PDS_GO_10XX could be the volume set ID for the Galileo EDR volume set, since
there are less than 100 volumes (since the XX placeholder accommodates the range 01 - 99
only). Volume IDs for volumes in the set would then be GO_1001, GO_1002, etc.

Chapter 19. Volume Organization and Naming 19-19

Note: Because of the uniqueness constraint, data preparers should consult with their PDS data
engineer when it comes time to formulate new VOLUME_ID and VOLUME_SET _ID values.

Volume Set IDs Prior to PDS Version 3.2

Prior to version 3.2, the 4-digit sequence identifier (item 5 above) did not include the “X”
wildcards. Instead, the last digits represented the volume. For example, on Magellan, a volume
set ID “USA_NASA JPL_MG_0001” was used only for the volume with the volume ID
“MG_0001". Subsequent volumes in the same set had volume set IDs that differed in the final
field. When a set of volumes was to be distributed as one logical unit, the volume set ID
included the range of volume IDs.

Example

USA_NASA PDS VG_0001_TO_VG_0003 for the three volumes that comprise the VVoyager
Uranus volume set.

19.6 Logical Volume Naming

Logical volumes retain the volume and volume set naming used at the physical volume level. For
further information, see the “VVolume Object” in Appendix A of this document.

19.7 Exceptions to This Standard

In rare cases volume IDs are subject to restrictions imposed by specific hardware or software
environments. Also, volumes made in the past may have I1Ds that do not meet this standard and
there may be compelling reasons for keeping the same volume ID when making a new copy of
the data. All new data sets, however, must adhere to this standard wherever possible.

19-20 Chapter 19. Volume Organization and Naming

(This page intentionally left blank.)

Appendix A. PDS Data Object Definitions A-1

Appendix A. PDS Data Object Definitions

This section provides an alphabetical reference of approved PDS data object definitions used for
labeling primary and secondary data objects. The definitions include descriptions, lists of
required and optional keywords, lists of required and optional subobjects (or child objects), and
one or more examples of specific objects. For a more detailed discussion on primary and
secondary data objects, see the Data Products chapter in this document.

Data object definitions are refined and augmented from time to time, as user community needs
arise, so object definitions for products designed under older versions of the Standards may
differ significantly. To check the current state of any object definition, consult a PDS data
engineer or either of these URLS:

PDS Catalog Search: http://pdsproto.jpl.nasa.gov/onlinecatalog/top.cfm

Data Dictionary Search: http://pdsproto.jpl.nasa.gov/ddcolstdval/newdd/top.cfm

The examples provided in this Appendix are based on both existing and planned PDS archive
products, modified to reflect the current version of the PDS Standards. Additional examples may
be obtained by contacting a PDS Data Engineer.

NOTE: Any keywords in the Planetary Science Data Dictionary may also be included in a
specific data object definition.

Primitive Objects

There exist four primitive data objects: ARRAY; BIT_ELEMENT; COLLECTION; and
ELEMENT. Although these objects are available, they should only be used after careful
consideration of the current high-level PDS Data Objects. Please see the PDS Objects chapter in
this document for guidelines on the use of primitive objects.

A-2 Appendix A. PDS Data Object Definitions
Chapter Contents
Appendix A. PDS Data Object DefinItiONSccoiuiiiiiiiiiiiieiiee e A-1
AL ALLAS ettt et e e aaea e A-3
A2 ARRAY (Primitive Data ODJECT)......cccuiiiiiiiiiiiee et A-4
A3 BIT_COLUMNottt ettt e st e st e e nbaeeaenaee s A-8
A4 BIT ELEMENT (Primitive Data ODJECE)covivieiiiiiiieecee e A-11
AL CATALOG ...ttt ettt e et e s te e re e e nnaee s A-12
A6 COLLECTION (Primitive Data ODJECt)cceviviiiiiiiiiiee e A-15
AT COLUMN ...ttt ettt et e e e e e e e e e bee e e nes A-16
A8 CONTAINER ..ot e e be e A-20
A9 DATA_PRODUCERooiitiiiiiie ettt A-27
A L0 DATA_SUPPLIER ...ttt A-29
ALl DIRECTORY ..ottt ettt srb e et e e e bt e e e nbe e e e beeeenes A-31
N B 10 (@1 U 1Y/ | =1 N N TP A-33
A.13 ELEMENT (Primitive Data ODJECT)eeeiiiiiiiiieiiiee e A-36
N e 1 I 5 RPN A-38
ALLS FILE bbb nes A-41
AL16 GAZETTEER_TABLE ... e A-45
ALT HEADER ... A-55
AL8 HISTOGRAM ...ttt te e e e nraeeeaneeas A-57
ALLD HISTORY ittt ettt e et e e e be e e e rbe e e anneas A-60
AL20 TIMAGEo anaeas A-64
A21 INDEX _TABLE .. .o A-69
AL22 PALETTE oottt ettt ettt e bbb e nt e e nbe e e nnneas A-74
A28 QUBE ...ttt b rb e anaeas A-T7
A28 SERIES.... .ot anaeas A-85
A.25 SPECTRAL_QUBEoiiiiiiiie et A-90
A.26 SPECTRUMooiiiiiiiie ettt sttt nee e A-109
A.27 SPICE KERNELooiiiiiiiiie e A-112
A28 SPREADSHEETooiiiiii ittt et ne e A-115
A29 TABLE ... e A-120
N I I = USSP A-141
ABL VOLUME ...ttt ettt e et e et e e nee e A-143

Appendix A. PDS Data Object Definitions A-3

Al ALIAS

The ALIAS object provides a method for identifying alternate terms or names for approved data
elements or objects within a data system. The ALIAS object is an optional sub-object of the
COLUMN object.

A.1l.1 Required Keywords

1. ALIAS NAME
2. USAGE_NOTE

A.l.2 Optional Keywords

Any

A.1.3 Required Objects

None

A.1.4 Optional Objects

None

A.1l5 Example

The following label fragment shows the ALIAS object included as a sub-object of a COLUMN:

OBJECT = COLUMN
NAME = ALT_FOOTPRINT_LONGITUDE
START_BYTE =1
DATA_TYPE = REAL
BYTES = 10
OBJECT = ALIAS

ALIAS_NAME = AR_LON
USAGE_NOTE = "MAGELLAN MIT ARCDR SIS"

END_OBJECT = ALIAS

END_OBJECT = COLUMN

A-4 Appendix A. PDS Data Object Definitions

A.2 ARRAY (Primitive Data Object)

The ARRAY obiject is provided to describe dimensioned arrays of homogeneous objects. Note
that an ARRAY may contain only a single sub-object, which can itself be another ARRAY or
COLLECTION if required. A maximum of 6 axes is allowed in an ARRAY. By default, the
rightmost axis is the fastest varying axis.

The optional “AXIS_*” elements are used to describe the variation between successive objects
in the ARRAY. Values for AXIS_ITEMS and “AXIS_*” elements for multidimensional arrays
are listed in axis order. The optional START_BYTE data element provides the starting location
relative to an enclosing object. If a START_BYTE is not specified, a value of 1 is assumed.

A.2.1 Required Keywords

1. AXES
2. AXIS_ITEMS
3. NAME

A.2.2 Optional Keywords

1. AXIS_INTERVAL

2. AXIS_NAME

3. AXIS_UNIT

4. AXIS_START

5. AXIS_STOP

6. AXIS_ORDER_TYPE

7. CHECKSUM

8. DESCRIPTION

9. INTERCHANGE_FORMAT
10. START BYTE

A.2.3 Required Objects

None

Note that while no specific sub-object is required, the ARRAY object must contain at least one
of the optional objects, following. That is, a null ARRAY object may not be defined.

Appendix A. PDS Data Object Definitions

A.2.4 Optional Objects

ARRAY
BIT_ELEMENT
COLLECTION
ELEMENT

N

A25 Examplel

A-5

Following is an example of a two-dimensional spectrum array in a detached label.

PDS_VERSION_ID
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS

DATA_SET_ID
OBSERVATION_ID
TARGET_NAME
INSTRUMENT_HOST_NAME

INSTRUMENT _NAME
PRODUCT_ID
OBSERVATION_TIME
START_TIME

STOP_TIME
PRODUCT_CREATION_TIME
~NARRAY

PDS3
FIXED_LENGTH
1600

180

"IHW-C-SPEC-2-EDR-HALLEY-V1.0"

"'704283"

"HALLEY"

"IHW SPECTROSCOPY AND SPECTROPHOTOMETRY
NETWORK™

"IHW SPECTROSCOPY AND SPECTROPHOTOMETRY™
"'704283"

1986-05-09T04:10:20.640
1986-05-09T04:07:50.640

UNK

1993-01-01T00:00:00.000

"SPEC2702.DAT"

/* Description of Object in File */

OBJECT
NAME
INTERCHANGE_FORMAT
AXES
AXIS_ITEMS
AXITS_NAME
AXIS_UNIT
AXIS_INTERVAL
AXIS_START

OBJECT
DATA_TYPE
BYTES
NAME
DERIVED_MAXIMUM
DERIVED_MINIMUM
OFFSET
SCALING_FACTOR

ARRAY

"2D SPECTRUM"

BINARY

2

(180,800)

("'RHO™, "APPROXIMATE WAVELENGTH')
(ARCSEC , ANGSTROMS)

(1.5,7.2164)

(1.0,5034.9)

ELEMENT
MSB_INTEGER
2

COUNT
2.424980E+04
0.000000E+00
0.000000E+00
1.000000E+00

A-6
NOTE

END_OBJECT
END_OBJECT
END

A2.6 Example 2

Appendix A. PDS Data Object Definitions

"Conversion factor 1.45 may be applied
to data to estimate photons/sq
m/sec/angstrom at 6800 angstroms."
ELEMENT

ARRAY

The following label shows ARRAY, COLLECTION and ELEMENT primitive objects all used

together.

PDS_VERSION_ID
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS

~ARRAY

DATA_SET_ID

TARGET_NAME

SPACECRAFT_NAME

INSTRUMENT _NAME

PRODUCT_ID

START_TIME

STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

NOTE

OBJECT
NAME
INTERCHANGE_FORMAT
AXES
AXIS_ITEMS
DESCRIPTION

OBJECT
NAME
BYTES
DESCRIPTION

OBJECT
NAME
BYTES
DATA_TYPE
START_BYTE
END_OBJECT

PDS3
FIXED_LENGTH
122

7387

"MISCHAO1.DAT"

"VEGA1-C-MISCHA-3-RDR-HALLEY-V1.0"
HALLEY

"WEGA 1"

"MAGNETOMETER""

XYz

"UNK™

"UNK™

"UNK™

"UNK™

"WEGA 1 MISCHA DATA™

ARRAY

MISCHA_DATA_FILE

BINARY

1

7387

"This file contains an array of fixed-
length Mischa records."

COLLECTION

MISCHA_RECORD

122

"Each record in this file consists of a
time tag followed by a 20-element array
of magnetic field vectors."

ELEMENT
START_TIME
2
MSB_INTEGER
1

ELEMENT

Appendix A. PDS Data Object Definitions

OBJECT
NAME
AXES
AXIS_ITEMS
START_BYTE
AXITS_NAME
AXIS_UNIT
AXIS_INTERVAL
DESCRIPTION

OBJECT
NAME
BYTES
DATA_TYPE
START_BYTE
END_OBJECT
END_OBJECT

END_OBJECT

END_OBJECT
END

A-7

ARRAY
MAGNETIC_FIELD_ARRAY

2

(3,20)

3

(""*XYZ_COMPONENT", "TIME")
C'N/A™ ,""'SECOND")
C*N/A™ , 0.2)

"Magnetic field vectors were recorded at
the rate of 10 per second. The
START_TIME field gives the time at
which the first vector in the record
was recorded. Successive vectors were
recorded at 0.2 second intervals."

ELEMENT
MAG_FIELD_COMPONENT_VALUE
2

MSB_ INTEGER

1

ELEMENT

ARRAY

COLLECTION

ARRAY

A-8 Appendix A. PDS Data Object Definitions

A3 BIT_COLUMN

The BIT_COLUMN object identifies a string of bits that do not fall on even byte boundaries and
therefore cannot be described as a distinct COLUMN. BIT_COLUMNs defined within columns
are analogous to columns defined within rows.

Notes:

(1) The Planetary Data System recommends that all fields (within new objects) be defined on
byte boundaries. This precludes having multiple values strung together in bit strings, as
occurs in the BIT_COLUMN object.

(2) BIT_COLUMN is intended for use in describing existing binary data strings, but is not
recommended for use in defining new data objects because it will not be recognized by
most general purpose software.

(3) ABIT_COLUMN must not contain embedded objects.

BIT_COLUMNSs of the same format and size may be specified as a single BIT_COLUMN by
using the ITEMS, ITEM_BITS, and ITEM_OFFSET elements. The ITEMS data element is used
to indicate the number of occurrences of a bit string.

A.3.1 Required Keywords

NAME

BIT_DATA TYPE

START_BIT

BITS (required for BIT_COLUMNSs without items)
DESCRIPTION

SAEIE A

>

3.2 Optional Keywords

BIT_MASK

BITS (optional for BIT_COLUMNSs with ITEMS)
FORMAT
INVALID_CONSTANT
ITEMS

ITEM_BITS
ITEM_OFFSET
MINIMUM

. MAXIMUM

10. MISSING_CONSTANT
11. OFFSET

©CoNoa~WNE

Appendix A. PDS Data Object Definitions

12. SCALING_FACTOR

13. UNIT

A.3.3 Required Objects
None

A.3.4 Optional Objects
None

A.3.5 Example

The label fragment below was extracted from a larger example which can be found under the
CONTAINER object. The BIT_COLUMN object can be a sub-object only of a COLUMN
object, but that COLUMN may itself be part of a TABLE, SPECTRUM, SERIES or

CONTAINER object.

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
VALID_MINIMUM
VALID_MAXIMUM
DESCRIPTION

OBJECT
NAME
BIT_DATA_TYPE
START BIT
BITS
MIN IMUM
MAX IMUM
DESCRIPTION

END_OBJECT

OBJECT

COLUMN
PACKET_ID
LSB_BIT_STRING
1

2
0
7
"Packet_id constitutes one of three
parts in the primary source information
header applied by the Payload Data
System (PDS) to the MOLA telemetry
packet at the time of creation of the

packet prior to transfer frame
creation."

BIT_COLUMN
VERSION_NUMBER
MSB_UNSIGNED_INTEGER

~NO Wk

"These bits i1dentify Version 1 as the
Source Packet structure. These bits
shall be set to "000"."

BIT_COLUMN

BIT_COLUMN

A-10 Appendix A. PDS Data Object Definitions

NAME = SPARE
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT =4
BITS =1
MINIMUM =0
MAX IMUM =0
DESCRIPTION = "Reserved spare. This bit shall be set
to "0
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = FLAG
BIT_DATA_TYPE = BOOLEAN
START_BIT =5
BITS =1
MINIMUM =0
MAX IMUM =0
DESCRIPTION = "This flag signals the presence or

absence of a Secondary Header data
structure within the Source Packet.
This bit shall be set to "0" since no
Secondary Header formatting standards
currently exist for Mars Observer."

END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = ERROR_STATUS
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT =6
BITS =3
MINIMUM =0
MAX IMUM =7
DESCRIPTION = "This field identifies in part the
individual application process within
the spacecraft that created the Source
Packet data."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = INSTRUMENT_ID
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT =9
BITS =8
MINIMUM = "N/A"
MAX IMUM = "N/A™
DESCRIPTION = "This field identifies in part the

individual application process within
the spacecraft that created the Source
Packet data. 00100011 is the bit
pattern for MOLA."
END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN

Appendix A. PDS Data Object Definitions A-11

A4 BIT ELEMENT (Primitive Data Object)

Under review.

A-12 Appendix A. PDS Data Object Definitions

A5 CATALOG

The CATALOG object is used within a VOLUME object to reference the completed PDS high-

level catalog object set. The catalog object set provides additional information related to the data
sets on a volume. Please refer to the File Specification and Naming chapter in this document for
more information.

A5.1 Required Keywords

None

A5.2 Optional Keywords

1. DATA SET_ID
2. LOGICAL_VOLUME_PATHNAME
3. LOGICAL_VOLUMES

A5.3 Required Objects

DATA_SET
INSTRUMENT
INSTRUMENT_HOST
MISSION

Awnh e

A.5.4 Optional Objects

DATA_SET_COLLECTION
PERSONNEL
REFERENCE

TARGET

N

A55 Example

The example below is a VOLDESC.CAT file for a volume containing multiple data sets. In this
case, the catalog objects are provided in separate files referenced by pointers.

PDS_VERSION_ID = PDS3
LABEL_REVISION_NOTE =""1998-07-01, S. Joy (PPI);"
RECORD_TYPE = STREAM

OBJECT VOLUME

Appendix A. PDS Data Object Definitions

VOLUME_SERIES_NAME
VOLUME_SET_NAME

VOLUME_SET_ID
VOLUMES
VOLUME_NAME

VOLUME_ID
VOLUME_VERSION_ID
VOLUME_FORMAT
MEDIUM_TYPE
PUBLICATION_DATE
DESCRIPTION

DATA_SET_ID

OBJECT
INSTITUTION_NAME
FACILITY_NAME
FULL_NAME

A-13

"WOYAGERS TO THE OUTER PLANETS"
"WVOYAGER NEPTUNE PLANETARY PLASMA
INTERACTIONS DATA™

USA_NASA_PDS_VG_1001

1

"WVOYAGER NEPTUNE PLANETARY PLASMA
INTERACTIONS DATA™

VG_1001

"WVERSION 1"

"1S0-9660"

""CD-ROM"

1992-11-13

"This volume contains a collection of
non-imaging Planetary Plasma datasets
from the Voyager 2 spacecraft encounter
with Neptune. Included are datasets
from the Cosmic Ray System (CRS),
Plasma System (PLS), Plasma Wave System
(PWS), Planetary Radio Astronomy (PRA),
Magnetometer (MAG), and Low Energy
Charged Particle (LECP) instruments, as
well as spacecraft position vectors
(POS) in several coordinate systems.
The volume also contains documentation
and index files to support access and
use of the data."

{"'VG2-N-CRS-3-RDR-D1-6SEC-V1.0",
"VG2-N-CRS-4-SUMM-D1-96SEC-V1.0",
"VG2-N-CRS-4-SUMM-D2-96SEC-V1.0",
"VG2-N-LECP-4-SUMM-SCAN-24SEC-V1.0",
"VG2-N-LECP-4-RDR-STEP-12.8MIN-V1.0",
"VG2-N-MAG-4-RDR-HG-COORDS-1.92SEC-V1.0",
"VG2-N-MAG-4-SUMM-HG-COORDS-48SEC-V1.0",
"VG2-N-MAG-4-RDR-HG-COORDS-9.6SEC-V1.0",
"VG2-N-MAG-4-SUMM-NLSCOORDS-12SEC-V1.0",
"VG2-N-PLS-5-RDR-2PROMAGSPH-48SEC-V1.0",

"VG2-N-PLS-5-RDR-ELEMAGSPHERE-96SEC-V1.0",
"WVG2-N-PLS-5-RDR- IONMAGSPHERE-48SEC-V1.0",

"VG2-N-PLS-5-RDR-I1ONLMODE-48SEC-V1.0",
"VG2-N-PLS-5-RDR-IONMMODE-12MIN-V1.0",

"WVG2-N-PLS-5-RDR-I1ON-INBNDWIND-48SEC-V1.0",

"VG2-N-POS-5-RDR-HGHGCOORDS-48SEC-V1.0",

"VG2-N-POS-5-SUMM-NLSCOORDS-12-48SEC-V1.0",

"VG2-N-PRA-4-SUMM-BROWSE-SEC-V1.0",
"VG2-N-PRA-2-RDR-HIGHRATE-60MS-V1.0",
"VG2-N-PWS-2-RDR-SA-4SEC-V1.0",
"VG2-N-PWS-4-SUMM-SA-48SEC-V1.0",
"VG2-N-PWS-1-EDR-WFRM-60MS-V1.0"}

DATA_PRODUCER

"UNIVERSITY OF CALIFORNIA, LOS ANGELES™
"PDS PLANETARY PLASMA INTERACTIONS NODE™
"DR. RAYMOND WALKER™

A-14

DISCIPLINE_NAME
ADDRESS_TEXT

END_OBJECT

OBJECT
INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

TELEPHONE_NUMBER

ELECTRONIC_MAIL_TYPE

ELECTRONIC_MAIL_ID
END_OBJECT

OBJECT
~MISSION_CATALOG
NINSTRUMENT_HOST_CATALOG
~NINSTRUMENT_CATALOG

ADATA_SET_CATALOG

~TARGET_CATALOG

~PERSONNEL_CATALOG

~REFERENCE_CATALOG
END_OBJECT

END_OBJECT
END

"PLASMA
"UCLA
1GPP

Appendix A. PDS Data Object Definitions

INTERACTIONS™

LOS ANGELES, CA 90024 USA™
DATA_PRODUCER

DATA_ SUPPLIER
"NATIONAL SPACE SCIENCE DATA CENTER"
"NATIONAL SPACE SCIENCE DATA CENTER"
"NATIONAL SPACE SCIENCE DATA CENTER"
"NATIONAL SPACE SCIENCE DATA CENTER"
""Code 633 \n

Goddard Space Flight Center

\n

Greenbelt, Maryland, 20771, USA"
'3012866695"
""NS1/DECNET""
""NSSDCA: :REQUEST"
DATA_SUPPLIER

CATALOG

“MISSION.CAT"
" INSTHOST.CAT"
{""CRS_INST.CAT",
“LECPINST.CAT",
“MAG_INST.CAT",
“PLS_INST.CAT",
“PRA_INST.CAT",
“PWS_INST.CAT"}
{"'CRS_DS.CAT",
“LECP_DS.CAT",
“MAG_DS.CAT",
“PLS_DS.CAT",
"POS_DS.CAT",
“PRA_DS.CAT",
"PWS_DS.CAT"}

TARGET .CAT
PERSON.CAT
REF.CAT
CATALOG

VOLUME

Appendix A. PDS Data Object Definitions A-15

A.6 COLLECTION (Primitive Data Object)

The COLLECTION object allows the ordered grouping of heterogeneous objects into a structure.
The COLLECTION object may contain a mixture of different object types, including other
COLLECTIONS. The optional START_BYTE data element provides the starting location
relative to an enclosing object. If a START_BYTE is not specified, a value of 1 is assumed.

A.6.1 Required Keywords

1. BYTES
2. NAME

A.6.2 Optional Keywords

1. DESCRIPTION

2. CHECKSUM

3. INTERCHANGE_FORMAT
4. START_BYTE

A.6.3 Required Objects

None

Note that although a specific sub-object is not required, the COLLECTION must contain at least
one of the optional objects listed following. That is, a null COLLECTION may not be defined.

A.6.4 Optional Objects

ELEMENT
BIT_ELEMENT
ARRAY
COLLECTION

N

A.6.5 Example

Please refer to Section A.2.6, Example 2 under the ARRAY object for an illustration of the
COLLECTION object used in conjunction with other primitive objects.

A-16

A7

Appendix A. PDS Data Object Definitions

COLUMN

The COLUMN object identifies a single column in a data object.

Notes:

1)

(2)
©)

(4)

(5)

ATl

Current PDS data objects that include COLUMN objects are the TABLE,
CONTAINER, SPECTRUM and SERIES objects.

COLUMNSs must not themselves contain embedded COLUMN objects.

COLUMNSs of the same format and size which constitute a vector may be specified as a
single COLUMN by using the ITEMS, ITEM_BYTES, and ITEM_OFFSET elements.
The ITEMS data element indicates the number of occurrences of the field (i.e.,
elements in the vector).

BYTES and ITEM_BYTES counts do not include leading or trailing delimiters or line
terminators.

For a COLUMN containing ITEMS, the value of BYTES should represent the total size
of the column including delimiters between the items. (See examples 1 and 2 below.)

Required Keywords

1. NAME

2. DATA_TYPE

3. START_BYTE

4. BYTES (required for COLUMNS without ITEMS)

AT.2

CoNo~WNE

Optional Keywords

BIT_MASK

BYTES (optional for COLUMNSs with ITEMs)
COLUMN_NUMBER
DERIVED_MAXIMUM
DERIVED_MINIMUM

DESCRIPTION

FORMAT

INVALID_CONSTANT

ITEM_BYTES

10. ITEM_OFFSET

11. ITEMS

12. MAXIMUM

13. MAXIMUM_SAMPLING_PARAMETER
14. MINIMUM

15. MINIMUM_SAMPLING_PARAMETER

Appendix A. PDS Data Object Definitions

16.
17.
18.
19.
20.
21.
22,
23.
24,

MISSING_CONSTANT

OFFSET
SAMPLING_PARAMETER_INTERVAL
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_UNIT
SCALING_FACTOR

UNIT

VALID_MAXIMUM
VALID_MINIMUM

A.7.3 Required Objects

None

A.7.4 Optional Objects

1.
2.

BIT_COLUMN
ALIAS

A.75 Example 1

A-17

The label fragment below shows a simple COLUMN object, in this case from an ASCII TABLE.

OBJECT

NAME

START_BYTE

BYTES

DATA_TYPE

FORMAT

UNIT

MISSING_CONSTANT
END_OBJECT

A.7.6 Example 2

COLUMN

"DETECTOR TEMPERATURE"
27

5

ASCI1_REAL

“"F5.1"

"KELVIN™

999.9

COLUMN

The fragment below shows two COLUMNSs containing multiple items. The first COLUMN is a
vector containing three ASCII_INTEGER items: Xxx, yy, zz. The second COLUMN contains
three character items: “xx”, “yy” and “zz”. Note that the value of BYTES includes the comma
delimiters between items, but the ITEM_BYTES value does not. The ITEM_OFFSET is the
number of bytes from the beginning of one item to the beginning of the next.

OBJECT
NAME
DATA_TYPE

COLUMN
COLUMN1XYZ
ASCIHI_INTEGER

A-18
START_BYTE =1
BYTES =8 /*i
ITEMS =3
ITEM_BYTES =2
ITEM_OFFSET =3
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = COLUMN
DATA_TYPE = CHARAC
START_BYTE =2 /*
BYTES =12 /*
/*
ITEMS =3
ITEM_BYTES =2 /*
/*
ITEM_OFFSET =5 /*
END_OBJECT = COLUMN
A.7.7 Example 3

The fragment below was extracted from a large

Appendix A. PDS Data Object Definitions

ncludes delimiters*/

2XYZ

TER

value does not include
value does not include
trailing quotes */

leading quote
leading and

value does not include
trailing quotes */
value does not include

leading and

leading quote

r example which can be found under the

CONTAINER object. It illustrates a single COLUMN object subdivided into several

BIT_COLUMN fields.

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
VALID_MINIMUM
VALID_MAXIMUM
DESCRIPTION

OBJECT
NAME
BIT_DATA_TYPE
START BIT
BITS
MINIMUM
MAX IMUM
DESCRIPTION

END_OBJECT

OBJECT

COLUMN

PACKET_ID

LSB_BIT_STRING

1

2

0

7

"Packet_id constitutes one of three
parts in the primary source
information header applied by the
Payload Data System (PDS) to the MOLA
telemetry packet at the time of
creation of the packet prior to
transfer frame creation. "

BIT_COLUMN

VERSION_NUMBER

MSB_UNSIGNED_INTEGER

1

3

0

7

"These bits i1dentify Version 1 as the
Source Packet structure. These bits
shall be set to "000"."

BIT_COLUMN

BIT_COLUMN

*/
*/

*/

*/

Appendix A. PDS Data Object Definitions

NAME
BIT_DATA_TYPE
START BIT
BITS

MIN IMUM

MAX IMUM
DESCRIPTION

END_OBJECT

OBJECT

NAME
BIT_DATA_TYPE
START_BIT
BITS

MIN IMUM

MAX IMUM
DESCRIPTION

END_OBJECT

OBJECT

NAME
BIT_DATA_TYPE
START BIT
BITS

MINIMUM

MAX IMUM
DESCRIPTION

END_OBJECT

OBJECT

NAME
BIT_DATA_TYPE
START BIT
BITS

MINIMUM

MAX IMUM
DESCRIPTION

END_OBJECT
END_OBJECT

A-19

SPARE

MSB_UNSIGNED_ INTEGER
4

1

0

0

"Reserved spare.
to "0""

This bit shall be set

= BIT_COLUMN

BIT_COLUMN

FLAG

BOOLEAN

5

1

0

0

"This flag signals the presence or
absence of a Secondary Header data
structure within the Source Packet.
This bit shall be set to "0" since no
Secondary Header formatting standards
currently exist for Mars Observer."
BIT_COLUMN

BIT_COLUMN

ERROR_STATUS

MSB_UNSIGNED_INTEGER

6

3

0

7

"This field identifies in part the
individual application process within
the spacecraft that created the Source
Packet data."

= BIT_COLUMN

BIT_COLUMN

INSTRUMENT_ID

MSB_UNSIGNED_ INTEGER

9

8

“NZA™

"NZA™

"This field identifies in part the
individual application process within
the spacecraft that creeated the Source
Packet data. 00100011 is the bit
pattern for MOLA."

BIT_COLUMN

COLUMN

A-20 Appendix A. PDS Data Object Definitions

A.8 CONTAINER

The CONTAINER object is used to group a set of sub-objects (such as COLUMNS) that repeat
within a data object (such as a TABLE). Use of the CONTAINER object allows repeating groups
to be defined within a data structure.

A.8.1 Required Keywords

NAME
START_BYTE
BYTES
REPETITIONS
DESCRIPTION

SAEIE A

A.8.2 Optional Keywords

Any

A.8.3 Required Objects

None

A.8.4 Optional Objects

1. COLUMN
2. CONTAINER

A.8.5 Example

The set of labels and format fragments below illustrates a data product layout in which the
CONTAINER object is used. The primary data product is a TABLE of data records. Each record
within the TABLE begins with 48 columns (143 bytes) of engineering data. The data product
acquires science data from seven different frames. Since the data from each frame are formatted
identically, one CONTAINER description suffices for all seven frames.

In this example there are two CONTAINER objects. The first CONTAINER object describes the
repeating frame information. Within this CONTAINER there is a second CONTAINER object in
which a 4-byte set of three COLUMN objects repeats 20 times. The use of the second
CONTAINER object permits the data supplier to describe the three COLUMNS (4 bytes) once,
instead of specifying sixty column definitions.

Appendix A. PDS Data Object Definitions

A-21

48 Columns of
Eng./Hskeeping Data | Fr 1 Fr2 Fr3 | Fr4 Fr5 Fre | Fr7
1 143 277 411 545 679 813 947 1080
S S
Container # 1 1 2|46 Columns | times 7 frames (Fr 1 - Fr 7)
0
1 81 134
Container #2 3 Columns times 20 shots (S1 - S20)
1 4

In the first CONTAINER, the keyword REPETITIONS is equal to 7. In the second
CONTAINER, REPETITIONS equals 20. Both CONTAINER objects contain a collection of
COLUMN objects. In most cases it is preferable to save space in the product label by placing
COLUMN objects in a separate file and pointing to that file from within the CONTAINER

object.

This attached label example describes the above TABLE structure using CONTAINER objects.

PDS_VERSION_ID
RECORD_TYPE
FILE_RECORDS
RECORD_BYTES
LABEL_RECORDS
FILE_NAME

~MOLA_SCIENCE_MODE_TABLE
DATA_SET_ID

PRODUCT_ID

SPACECRAFT_NAME
INSTRUMENT_ID

INSTRUMENT _NAME

TARGET_NAME

SOFTWARE_NAME

UPLOAD_ID
PRODUCT_RELEASE_DATE
START_TIME

STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
PRODUCT_CREATION_TIME
MISSION_PHASE_NAME

PDS3
FIXED_LENGTH
467

1080

4
"AEDR.AO1"

5
""MO-M-MOLA-1-AEDR-LO-V1.0"
""MOLA-AEDR-10010-0001""
MARS_OBSERVER

MOLA
MARS_OBSERVER_LASER_ALTIMETER
MARS

"BROWSER 17.1"

vy g
1994-12-29T02:10:09.321
1994-09-29T04:12:43.983
1994-09-29T06:09:54.221
''12345"

"'12447"
1994-01-29T07:30:333

MAPP ING

A-22 Appendix A. PDS Data Object Definitions

ORBIT_NUMBER = 0001

PRODUCER_ID MO_MOLA_TEAM

PRODUCER_FULL_NAME "DAVID E. SMITH"

PRODUCER_INSTITUT ION_NAME ""GODDARD SPACE FLIGHT CENTER"

DESCRIPTION = "This data product contains the
aggregation of MOLA telemetry packets by Orbit. All Experiment
Data Record Packets retrieved from the PDB are collected in this
data product. The AEDR data product is put together with the
Project-provided software tool Browser."

OBJECT = MOLA_ SCIENCE_MODE_TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 463
COLUMNS = 97
ROW_BYTES = 1080
NSTRUCTURE = "MOLASCI .FMT"
DESCRIPTION = "This table is one of two that describe

the arrangement of information on the Mars Observer Laser
Altimeter (MOLA) Aggregated Engineering Data Record (AEDR). ..."

END_OBJECT

MOLA_SCIENCE_MODE_TABLE

END

Contents of the MOLASCI.FMT file:

OBJECT = COLUMN
NAME = PACKET_ID
DATA_TYPE = LSB_BIT_STRING
START_BYTE =1
BYTES =2
VALID_MINIMUM =0
VALID_MAXIMUM =7
DESCRIPTION = "Packet_id constitutes one of three

parts in the primary source information header applied by the
Payload Data System (PDS) to the MOLA telemetry packet at the time
of creation of the packet prior to transfer frame creation."

OBJECT = BIT_COLUMN

NAME = VERSION_NUMBER

BIT_DATA TYPE = UNSIGNED_INTEGER

START_BIT =1

BITS =3

MINIMUM =0

MAXIMUM =7

DESCRIPTION = "These bits identify Version 1 as the

Source Packet structure. These bits shall be set to "000"."

END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN

NAME = SPARE

BIT_DATA_TYPE = UNSIGNED_INTEGER

Appendix A. PDS Data Object Definitions A-23

START_BIT =4
BITS =1
MINIMUM =0
MAX IMUM =0
DESCRIPTION = "Reserved spare. This bit shall be set
to "0""
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = SECONDARY_HEADER_FLAG
BIT_DATA_TYPE = BOOLEAN
START_BIT =5
BITS =1
MINIMUM =0
MAX IMUM =0
DESCRIPTION = "This flag signals the presence or

absence of a Secondary Header data structure within the Source
Packet. This bit shall be set to "0" since no Secondary Header
formatting standards currently exist for Mars Observer."

END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = ERROR_STATUS
BIT_DATA_TYPE = UNSIGNED_INTEGER
START_BIT =6
BITS =3
MINIMUM =0
MAX IMUM =7
DESCRIPTION = "This field identifies in part the

individual application process within the spacecraft that created
the Source Packet data."

END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = INSTRUMENT_ID
BIT_DATA_TYPE = UNSIGNED_INTEGER
START_BIT =9
BITS =8
MINIMUM = 2#0100011#
MAX IMUM = 2#0100011#
DESCRIPTION = "This field identifies in part the

individual application process within the spacecraft that created
the Source Packet data. 00100011 is the bit pattern for MOLA."

END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN
OBJECT = COLUMN

NAME = COMMAND_ECHO

DATA_TYPE = INTEGER

START_BYTE = 125

BYTES = 16

ITEMS =8

A-24 Appendix A. PDS Data Object Definitions

ITEM_BYTES =2

MINIMUM =0

MAX IMUM = 65535

DESCRIPTION = "First 8 command words received during

current packet, only complete commands are stored, MOLA specific
commands only. The software attempts to echo all valid commands.
IT the command will fit in the room remaining in the..."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = PACKET_VALIDITY_CHECKSUM
DATA TYPE = INTEGER
START_BYTE = 141
BYTES =2
MINIMUM =0
MAX IMUM = 65535
DESCRIPTION = "Simple 16 bit addition of entire packet

contents upon completion. This location is zeroed for addition.
This word is zeroed, then words 0-539 are added without carry to a
variable that is initially zero. The resulting lower 16 bits

are_.."
END_OBJECT = COLUMN
OBJECT = CONTAINER
NAME = FRAME_STRUCTURE
ASTRUCTURE = "MOLASCFR.FMT" /*points to the columns*/
/*that make up the frame descriptors */
START_BYTE = 143
BYTES = 134
REPETITIONS =7
DESCRIPTION = "The frame_structure container

represents the format of seven repeating groups of attributes in
this data product. The data product reflects science data
acquisition from seven different frames. Since the data from each

frame are ..."
END_OBJECT = CONTAINER
Contents of the MOLASCFR.FMT FILE:

OBJECT = CONTAINER
NAME = COUNTS
START_BYTE =1
BYTES =4
REPETITIONS = 20
ANSTRUCTURE = "MOLASCCT.FMT"
DESCRIPTION = "This container has three sub-elements

(range to surface counts, 1st channel received pulse energy, and
2nd channel received pulse energy). The three sub-elements repeat
for each of 20 shots.™

END_OBJECT = CONTAINER
OBJECT = COLUMN
NAME = SHOT_2_LASER_TRANSMITTER_POWR

Appendix A. PDS Data Object Definitions

DATA_TYPE
START_BYTE
BYTES
MINIMUM
MAXTMUM
DESCRIPTION
END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
MINIMUM
MAXTMUM
DESCRIPTION

END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
MINIMUM
MAXTMUM
DESCRIPTION

END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
MINIMUM
MAXTMUM
DESCRIPTION

A-25

UNSIGNED_ INTEGER
81

1

0

65535

COLUMN

COLUMN
SHOT_1_LASER_TRANSMITTER_POWR
UNSIGNED_INTEGER
82

1

0

65535

COLUMN

COLUMN
SHOT_4_LASER_TRANSMITTER_POWR
UNSIGNED_ INTEGER
83

1

0

65535

COLUMN

COLUMN

CH_3_2ND_HALF_FRAME_BKGRND_CN
UNSIGNED_INTEGER

133

1

0

255

"The background energy or noise count

levels in channels 1, 2, 3, and 4 respectively by half-frame.
Pseudo log value of NOISE(1, 2, 3, 4) at the end of a half-frame
of current frame, 5.3 bit

sum..."
END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
MINIMUM
MAXTMUM
DESCRIPTION

format. Plog base 2 of background count
COLUMN

COLUMN

CH_4_2ND_HALF_FRAME_BKGRND_CN
UNSIGNED_INTEGER

134

1

0

255

"The background energy or noise count

levels in channels 1, 2, 3, and 4 respectively by half-frame.
Pseudo log value of NOISE(1, 2, 3, 4) at the end of a half-frame

A-26

of current frame, 5.3 bit
sum..."
END_OBJECT =

Contents of the MOLASCCT.FMT FILE:

OBJECT =
NAME =
DATA_TYPE =
START_BYTE =
BYTES =
DESCRIPTION =

Appendix A. PDS Data Object Definitions

format. Plog base 2 of background count

COLUMN

COLUMN

RANGE_TO_SURFACE_TIU_CNTS

MSB_INTEGER

1

2

"The possible 20 valid frame laser shots

surface ranging measurements in Timing Interval Unit (TIU) counts.
The least significant 16 bits of TIU (SLTIU), stored for every

shot. B[0] = Bits 15-8 of
END_OBJECT =

OBJECT =
NAME =
DATA_TYPE =
START_BYTE =
BYTES =
DESCRIPTION =

TIU reading; B[1] = Bits 7-0 of _._.."
COLUMN

COLUMN

FIRST_CH_RCVD_PULSE_ENRGY
UNSIGNED_INTEGER

3

1

"The level of return, reflected energy

as received by the first channel and matched filter to trigger.
This is a set of values for all possible 20 shots within the
frame. Lowest numbered non-zero energy reading for each shot."

END_OBJECT =

OBJECT =
NAME
DATA_TYPE
START_BYTE
BYTES =
DESCRIPTION

as received by the second

COLUMN

COLUMN
SECOND_CH_RCVD_PULSE_ENRGY
UNSIGNED_INTEGER

=4

1

= "The level of return, reflected energy

channel and matched filter to trigger.

This is a set of values for all possible 20 shots within the
frame. 2nd lowest numbered non-zero energy reading for each

shot..."
END_OBJECT =

COLUMN

Appendix A. PDS Data Object Definitions A-27

A9 DATA_PRODUCER

The DATA PRODUCER object is a required sub-object of the VOLUME object. The
DATA_PRODUCER, as opposed to the DATA_SUPPLIER, is an individual or organization
responsible for collecting, assembling, and/or engineering the raw data into one or more data
sets.

A9.1 Required Keywords

INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
ADDRESS_TEXT

el N

A.9.2 Optional Keywords

DISCIPLINE_NAME
NODE_NAME
TELEPHONE_NUMBER
ELECTRONIC_MAIL_TYPE
ELECTRONIC_MAIL_ID

arwnhE

A.9.3 Required Objects

None

A.9.4 Optional Objects

None

A95 Example

The fragment below was extracted from the example under the VOLUME object.

OBJECT
INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

DATA_PRODUCER
"U.S.G.S. FLAGSTAFF"
""BRANCH OF ASTROGEOLOGY"
"ERIC M. ELIASON"
"IMAGE PROCESSING"
"Branch of Astrogeology
United States Geological Survey
2255 North Gemini Drive

A-28 Appendix A. PDS Data Object Definitions

Flagstaff, Arizona 86001 USA™
END_OBJECT = DATA_PRODUCER

Appendix A. PDS Data Object Definitions A-29

A.10 DATA_SUPPLIER

The DATA_SUPPLIER object is an optional sub-object of the VOLUME object. The
DATA_SUPPLIER, as opposed to the DATA_PRODUCER, is an individual or organization
responsible for distributing the data sets and associated data to the science community.

A.10.1 Required Keywords

INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
ADDRESS_TEXT
TELEPHONE_NUMBER
ELECTRONIC_MAIL_TYPE
ELECTRONIC_MAIL_ID

NogakrowdpE

A.10.2 Optional Keywords

1. DISCIPLINE_NAME
2. NODE_NAME

A.10.3 Required Objects

None

A.10.4 Optional Objects

None

A.10.5 Example

The fragment below was extracted from the larger example which can be found under the
VOLUME object.

OBJECT
INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

DATA_SUPPLIER

"NATIONAL SPACE SCIENCE DATA CENTER"
"NATIONAL SPACE SCIENCE DATA CENTER"
"NATIONAL SPACE SCIENCE DATA CENTER™
“NATIONAL SPACE SCIENCE DATA CENTER"
"Code 633

Goddard Space Flight Center
Greenbelt, Maryland, 20771, USA"
"'3012866695"

""NS1/DECNET""

TELEPHONE_NUMBER
ELECTRONIC_MAIL_TYPE

A-30 Appendix A. PDS Data Object Definitions

ELECTRONIC_MAIL_ID ""NSSDCA: :REQUEST""
END_OBJECT = DATA_SUPPLIER

Appendix A. PDS Data Object Definitions A-31

A1l DIRECTORY

The DIRECTORY object is used to define a hierarchical file organization on a linear (i.e.,
sequential) medium such as tape. The DIRECTORY object identifies all directories and
subdirectories below the root level. It is a required sub-object of the VOLUME object for
volumes delivered on sequential media.

Note: The root directory on a volume does not need to be explicitly defined with the
DIRECTORY object.

Subdirectories are identified by defining DIRECTORY objects as sub-objects of the root
DIRECTORY. Files within the directories and subdirectories are sequentially identified by using
FILE objects with a SEQUENCE_NUMBER value corresponding to their position on the
medium. The SEQUENCE_NUMBER value must be unique for each file on the medium.

A.11.1 Required Keywords

1. NAME

A.11.2 Optional Keywords

1. RECORD_TYPE
2. SEQUENCE_NUMBER

A.11.3 Required Objects

1. FILE

A.11.4 Optional Objects

1. DIRECTORY

A-32

A.115 Example

Appendix A. PDS Data Object Definitions

The fragment below was extracted from the larger example which can be found under the

VOLUME object.

OBJECT
NAME

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FILE_NAME
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
SEQUENCE_NUMBER
END_OBJECT
END_OBJECT

DIRECTORY
INDEX

FILE
"INDXINFO.TXT"
STREAM

5

FILE

FILE
"INDEX.LBL"
STREAM

6

FILE

FILE
"INDEX.TAB"
FIXED_LENGTH
512

6822

7

FILE
DIRECTORY

Appendix A. PDS Data Object Definitions A-33

A.12 DOCUMENT

Note: This section is currently undergoing major revision. Please consult a PDS
data engineer for the latest available information on document labelling.

The DOCUMENT obiject is used to label a particular document that is provided on a volume to
support an archived data product. A document can be made up of one or more files in a single
format. For instance, a document may be comprised of as many TIFF files as there are pages in
the document.

Multiple versions of a document can be supplied on a volume with separate formats, requiring a
DOCUMENT object for each document version (i.e., OBJECT = TEX_DOCUMENT and
OBJECT = PS_DOCUMENT when including both the TEX and Postscript versions of the same
document).

PDS requires that at least one version of any document be plain ASCII text in order to allow
users the capability to read, browse, or search the text without requiring software or text
processing packages. This version can be plain, unmarked text, or ASCII text containing a
markup language. (See the Documentation chapter of this document for more details.)

The DOCUMENT object contains keywords that identify and describe the document, provide the
date of publication of the document, indicate the number of files comprising the document,
provide the format of the document files, and identify the software used to compress or encode
the document, as applicable.

DOCUMENT labels must be detached files unless the files are plain, unmarked text that will not
be read by text or word processing packages. A DOCUMENT object for each format type of a
document can be included in the same label file with pointers, such as "TIFF_DOCUMENT for
a TIFF formatted document. (See example below.)

A.12.1 Required Keywords

DOCUMENT _NAME
DOCUMENT_TOPIC_TYPE
INTERCHANGE_FORMAT
DOCUMENT_FORMAT
PUBLICATION_DATE

arwnhE

A.12.2 Optional Keywords

1. ABSTRACT_TEXT
2. DESCRIPTION
3. ENCODING_TYPE

A-34 Appendix A. PDS Data Object Definitions

4. FILES

A.12.3 Required Objects

None

A.12.4 Optional Objects

None

A.125 Example

The following example detached label, PDSUG.LBL, is for a Document provided in three
formats: ASCII text, TIFF, and TEX.

PDS_VERSION_ID = PDS3
RECORD_TYPE = UNDEFINED
~ASCI1_DOCUMENT = "PDSUG.ASC"
~TIFF_DOCUMENT = {""PDSUGOO1.TIF", "PDSUGO02.TIF",
"PDSUGOO3.TIF'", "PDSUGOO4.TIF" }
~TEX_DOCUMENT = "PDSUG.TEX"
OBJECT = ASCI1_DOCUMENT
DOCUMENT_NAME = "Planetary Data System Data Set Catalog
User®s Guide"
PUBLICATION_DATE = 1992-04-13
DOCUMENT_TOPIC_TYPE = "USER"S GUIDE"
INTERCHANGE_FORMAT = ASCII
DOCUMENT_FORMAT = TEXT
DESCRIPTION = "The Planetary Data System Data Set

Catalog User®"s Guide describes the fundamentals of accessing,
searching, browsing, and ordering data from the PDS Data Set Catalog
at the Central Node. The text for this 4-page document is provided
here in this plain, ASCII text file."

ABSTRACT_TEXT = "The PDS Data Set Catalog is similar in
function and purpose to a card catalog in a library. Use a Search
screen to find data items, a List/Order screen to order data items,
and the More menu option to see more information."

END_OBJECT = ASCI1_DOCUMENT

OBJECT
DOCUMENT_NAME

TIFF_DOCUMENT
"Planetary Data System Data Set Catalog
User®s Guide"
"USER"S GUIDE"

DOCUMENT_TOPIC_TYPE

Appendix A. PDS Data Object Definitions A-35

INTERCHANGE_FORMAT = BINARY

DOCUMENT_FORMAT = TIFF

PUBLICATION_DATE = 1992-04-13

FILES =4

ENCODING_TYPE = "CCITT/3"

DESCRIPTION = "The Planetary Data System Data Set

Catalog User®"s Guide describes the fundamentals of accessing,
searching, browsing, and ordering data from the PDS Data Set Catalog
at the Central Node.

The 4-page document is provided here in 4 consecutive files, one
file per page, in Tagged Image File Format (TIFF) using Group 3

compression. It has been successfully imported into WordPerfect
5.0, FrameMaker, and Photoshop."'
ABSTRACT_TEXT = "The PDS Data Set Catalog is similar in

function and purpose to a card catalog in a library. Use a Search
screen to find data items, a List/Order screen to order data items,
and the More menu option to see more information."

END_OBJECT = TIFF_DOCUMENT
OBJECT = TEX_DOCUMENT
DOCUMENT_NAME = "Planetary Data System Data Set Catalog
User®s Guide"
DOCUMENT_TOPIC_TYPE = "USER"S GUIDE"
INTERCHANGE_FORMAT = ASCII
DOCUMENT_FORMAT = TEX
PUBLICATION_DATE = 1992-04-13
DESCRIPTION = "The Planetary Data System Data Set

Catalog User®"s Guide descrlbes the fundamentals of accessing,
searching, browsing, and ordering data from the PDS Data Set Catalog
at the Central Node.

The 4-page document is provided here in TeX format with all
necessary macros included."

ABSTRACT_TEXT = "The PDS Data Set Catalog is similar in
function and purpose to a card catalog in a library. Use a Search
screen to find data items, a List/Order screen to order data items,
and the More menu option to see more information."

END_OBJECT = TEX_DOCUMENT
END

A-36

A.13 ELEMENT (Primitive Data Object)

The ELEMENT object provides a means of defining a lowest-level component of a data object,
and which can be stored in an integral multiple of 8-bit bytes. ELEMENT objects may be
embedded in COLLECTION and ARRAY data objects. The optional START_BYTE element
identifies a location relative to the enclosing object. If not explicitly included, a START_BYTE

=1 is assumed for the ELEMENT.

A.13.1 Required Keywords

1.
2.
3.

BYTES
DATA_TYPE
NAME

A.13.2 Optional Keywords

©CoNoA~WNE

START BYTE
BIT_MASK
DERIVED_MAXIMUM
DERIVED_MINIMUM
DESCRIPTION
FORMAT
INVALID_CONSTANT
MINIMUM
MAXIMUM

. MISSING_CONSTANT
. OFFSET

. SCALING_FACTOR
.UNIT

. VALID_MINIMUM

. VALID_MAXIMUM

A.13.3 Required Objects

None

A.13.4 Optional Objects

None

Appendix A. PDS Data Object Definitions

Appendix A. PDS Data Object Definitions A-37

A.13.5 Example

Please refer to the example in the ARRAY Primitive object (Section A.2) for an example of the
use of the ELEMENT object.

A-38 Appendix A. PDS Data Object Definitions

A.14 FIELD

The FIELD object identifies a single variable-width field in a SPREADSHEET object.
Notes:

1. The only PDS data object that includes FIELD objects is the SPREADSHEET. FIELDs
must not themselves contain embedded FIELD objects.

2. The DATA_TYPE keyword is required to specify the data type of the values that are
stored in the field when data are present.

3. A vector with two or more identically formatted components may be specified as a single
FIELD by using the ITEM and ITEM_BYTES elements. The ITEMS data element
indicates the number of occurrences within the field (i.e., components in the vector).

4. If aFIELD contains multiple items, then the ITEM_BYTES keyword is used to specify
the maximum number of bytes any item in the set may have. ITEM_BYTES does not
include the quotation marks that enclose string items.

5. The BYTES keyword is used to specify the maximum size of the FIELD object, not
including leading or trailing delimiters or line terminators. When a field contains items,
the BYTES value is set to the product of the ITEM_BYTES and ITEMS values plus the
number of interior delimiter bytes (e.g., for three ASCII_INTEGER items of three bytes
each ITEMS =3, ITEM_BYTES=3, and BYTES= 11, which includes the two delimiters
WITHIN the field but not the trailing delimiter).

6. The (optional) FORMAT element may be used to specify the format of FIELD data when
they are present. The FORMAT specification applies to the maximum size of the field
object, allowing shorter variations. For example, FORMAT = "F5.1" is consistent with
each of the following:

..,127.1, ...
,-12.7,
w30
..,3.01, ... and

7. Inclusion of data elements VALID_MINIMUM and VALID_MAXIMUM within FIELD
object definitions is encouraged.

8. If data element MISSING_CONSTANT is used, its meaning must be clearly stated since
absence of a field value is the default indication of 'no data'.

A.14.1 Required Keywords

Appendix A. PDS Data Object Definitions A-39

1. BYTES
2. DATA_TYPE
3. NAME

A.14.2 Optional Keywords

DESCRIPTION
FIELD_NUMBER
FORMAT
ITEM_BYTES
ITEMS

UNIT
VALID_MAXIMUM
VALID_MINIMUM
PSDD

CoNo~WNE

A.14.3 Required Objects

None

A.14.4 Optional Objects

1. ALIAS

A.145 Example 1

The label fragment below shows a simple FIELD object from a SPREADSHEET object (see the
SPREADSHEET section of this document).

OBJECT = FIELD
NAME = "DETECTOR TEMPERATURE"
FIELD_NUMBER =3
BYTES =5
DATA_TYPE = "ASCII_REAL"
FORMAT = "F5.1"
UNIT = "KELVIN"
END_OBJECT = FIELD

A.14.6 Example 2

A-40

Appendix A. PDS Data Object Definitions

The fragment below shows two FIELDs containing multiple items. The first FIELD is a vector
containing three ASCII_INTEGER items: xx, yy, zz. The second FIELD contains three

character items: "xx", "yy" and "zz".

Note that the value of BYTES includes the comma

delimiters between items, but the ITEM_BYTES value does not.

OBJECT
NAME
DATA_TYPE
FIELD_NUMBER
BYTES
ITEMS
ITEM BYTES
FORMAT
MISSING_CONSTANT
DESCRIPTION

END_OBJECT

OBJECT
NAME
DATA_TYPE
FIELD_NUMBER
*/
BYTES
ITEMS
ITEM BYTES
FORMAT
END_OBJECT

FIELD
"FIELD 1 - IX, IY, IZ"
"ASCII_INTEGER"

1

8 /*includes item separating delimiters*/

3 /* i.e. 17,15,27 or 1,2,3 */

2 /* individual item maximum size in bytes */
W

-1

"Raw values of FIELD 1. IX, IY, and IZ represent
independent, non-negative measurements. A value

of -1 denotes a measurement that could not be
processed."
FIELD
FIELD
"FIELD 2 - AX, AY,AzZ"
"CHARACTER"
2 /* One FIELD object precedes this object
12 /* Doesn't include first/last quotes */
3 /* i.e. "xx","yy","zz" */
2
napn
FIELD

Appendix A. PDS Data Object Definitions A-41

A.15 FILE

The FILE object is used in attached or detached labels to define the attributes or characteristics
of a data file. In attached labels, the file object is also used to indicate boundaries between label
records and data records in data files which have attached labels. The FILE object may be used
in three ways:

1.

2.

3.

As an implicit object in attached or detached labels. All detached label files and attached
labels contain an implicit FILE object which starts at the top of the label and ends where
the label ends. In these cases, the PDS recommends against using the NAME keyword to
reference the file name. This label fragment shows the required FILE object elements as
they typically appear in labels:

RECORD_TYPE FIXED_LENGTH

RECORD_BYTES = 80
FILE_RECORDS = 522
LABEL_RECORDS = 10

For data products labelled using the implicit file object (e.g., in minimal labels)
“DATA_OBJECT_TYPE = FILE” should be used in the DATA_SET catalog object.

As an explicit object which is used when a file reference is needed in a combined
detached or minimal label. In this case, the optional FILE_NAME element is used to
identify the file being referenced.

OBJECT = FILE
FILE_NAME = ""IM10347 .DAT"
RECORD_TYPE = STREAM
FILE_RECORDS = 1024

END_OBJECT = FILE

For data products labelled using the explicit FILE object (e.g., in minimal labels)
DATA_OBJECT_TYPE = FILE should be used in the DATA_SET catalog object.

As an explicit object to identify specific files as sub-objects of the DIRECTORY in
VOLUME objects. In this case, the optional FILE_NAME element is used to identify the
file being referenced on a tape archive volume.

OBJECT = FILE
FILE_NAME = "VOLDESC.CAT"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 1

END_OBJECT = FILE

A-42 Appendix A. PDS Data Object Definitions

The keywords in the FILE object always describe the file being referenced, and not the file in
which the keywords are contained (i.e., if the FILE object is used in a detached label file, the
FILE object keywords describe the detached data file, not the label file which contains the
keywords). For example, if a detached label for a data file is being created and the label will be
in STREAM format, but the data will be stored in a file having FIXED_LENGTH records, then
the RECORD_TYPE keyword in the label file must be given the value FIXED_LENGTH.

The following table identifies data elements that are required (Req), optional (Opt), and not
applicable (-) for various types of files

Labeling Method Att Det Att Det Att Det Att Det
RECORD_TYPE FIXED_LENGTH VARIABLE_LENGTH STREAM UNDEFINED
RECORD_BYTES Req Req Rmax Rmax Omax

FILE_RECORDS Req Req Req Req Opt Opt
LABEL_RECORDS Req - Req - Opt

A.15.1 Required Keywords

1. RECORD_TYPE

(See above table for the conditions of use of additional required keywords)

A.15.2 Optional Keywords

1. DESCRIPTION

2. ENCODING_TYPE

3. FILE_NAME (required only in minimal detached labels and tape archives)

4. FILE_RECORDS (required only in minimal detached labels and tape archives)
5. INTERCHANGE_FORMAT

6. LABEL_RECORDS

7. RECORD_BYTES

8. REQUIRED _STORAGE_BYTES

9. SEQUENCE_NUMBER

10. UNCOMPRESSED_FILE_NAME

A.15.3 Required Objects

None

A.15.4 Optional Objects

Appendix A. PDS Data Object Definitions

None

A.155 Example

Following is an example of a set of explicit FILE objects in a combined detached label. An

A-43

additional example of the use of explicit FILE object can be found under the VOLUME object
(Section A.29).

PDS_VERSION_ID

HARDWARE_MODEL_ ID
OPERATING_SYSTEM_ID
SPACECRAFT_NAME
INSTRUMENT _NAME
MISSION_PHASE_NAME

TARGET_NAME
DATA_SET_ID
PRODUCT_ID

OBJECT
FILE_NAME
FILE_RECORDS
RECORD_TYPE
RECORD_BYTES
START_TIME
STOP_TIME
ATIME_SERIES

OBJECT

INTERCHANGE_FORMAT

ROWS
ROW_BYTES
COLUMNS
ASTRUCTURE

SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_UNIT
SAMPLING_PARAMETER_INTERVAL

END_OBJECT
END_OBJECT

OBJECT
FILE_NAME
FILE_RECORDS
RECORD_TYPE
RECORD_BYTES
START_TIME
STOP_TIME
ATIME_SERIES

PDS3

"SUN SPARC STATION™"

"SUN OS 4.1.1"
"VOYAGER 2"

"PLASMA WAVE RECEIVER"
"URANUS ENCOUNTER"

URANUS

"VG2-U-PWS-4-RDR-SA-48 .0SEC-V1.0"
"T860123-T860125""

FILE
"T860123.DAT"
1800
FIXED_LENGTH
105

1986-01-23T00:00:00.000
1986-01-24T00:00:00.000

"T860123.DAT"

TIME_SERIES
BINARY

1800

105

19
"PWS_DATA.FMT""
TIME

SECOND

48.0
TIME_SERIES
FILE

FILE
"T860124 .DAT"
1800
FIXED_LENGTH
105

1986-01-24T00:00:00.000
1986-01-25T00:00:00.000

"T860124 .DAT"

A-44 Appendix A. PDS Data Object Definitions

OBJECT = TIME_SERIES
INTERCHANGE_FORMAT = BINARY
ROWS = 1800
ROW_BYTES = 105
COLUMNS = 19
~STRUCTURE = ""PWS_DATA.FMT"
SAMPLING_PARAMETER_NAME = TIME
SAMPLING_PARAMETER_UNIT = SECOND
SAMPLING_PARAMETER_INTERVAL = 48.0
END_OBJECT = TIME_SERIES
END_OBJECT = FILE
OBJECT = FILE
FILE_NAME = ""T860125._DAT"
FILE_RECORDS = 1799
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 105

START_TIME = 1986-01-30T00:00:00.000
STOP_TIME = 1986-01-30T23:59:12.000
ATIME_SERIES = "T860125.DAT"
OBJECT = TIME_SERIES
INTERCHANGE_FORMAT = BINARY
ROWS = 1799
ROW_BYTES = 105
COLUMNS = 19
~STRUCTURE = ""PWS_DATA.FMT"
SAMPLING_PARAMETER_NAME = TIME
SAMPLING_PARAMETER_UNIT = SECOND
SAMPLING_PARAMETER_INTERVAL = 48.0
END_OBJECT = TIME_SERIES
END_OBJECT = FILE

END

Appendix A. PDS Data Object Definitions A-45

A.l6 GAZETTEER_TABLE

The GAZETTEER_TABLE object is a specific type of TABLE object that provides information
about the geographical features of a planet or satellite. It contains information about named
features such as location, size, origin of feature name, and so on. The GAZETTEER_TABLE
contains one row for each named feature on the target body. The table is formatted so that it may
be read directly by many data management systems on various host computers. All fields
(columns) are separated by commas, and character fields are enclosed by double quotation
marks. Each record consist of 480 bytes, with a carriage return/line feed sequence in bytes 479
and 480. This allows the table to be treated as a fixed length record file on hosts that support this
file type and as a normal text file on other hosts.

Currently the PDS Imaging Node at the USGS is the data producer for all
GAZETTEER _TABLEs.

A.16.1 Required Keywords

NAME
INTERCHANGE_FORMAT
ROWS

COLUMNS

ROW_BYTES
DESCRIPTION

SurwhE

A.16.2 Optional Keywords

Any

A.16.3 Required Objects

1. COLUMN

A.16.3.1 Required COLUMN Objects (NAME =)

TARGET_NAME
SEARCH_FEATURE_NAME
DIACRITIC_FEATURE_NAME
MINIMUM_LATITUDE
MAXIMUM_LATITUDE
CENTER_LATITUDE
MINIMUM_LONGITUDE

A-46

MAXIMUM_LONGITUDE
CENTER_LONGITUDE
LABEL_POSITION_ID
FEATURE_LENGTH
PRIMARY_PARENTAGE_ID
SECONDARY_PARENTAGE_ID
MAP_SERIAL_ID
FEATURE_STATUS_TYPE
APPROVAL_DATE
FEATURE_TYPE
REFERENCE_NUMBER
MAP_CHART _ID
FEATURE_DESCRIPTION

Appendix A. PDS Data Object Definitions

A.16.3.2 Required Keywords (for Required COLUMN Objects)

NAME
DATA_TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION

A.16.4 Optional Objects

None

A.16.5 Example

PDS_VERSION_ID PDS3

RECORD_TYPE

RECORD_BYTES 480
FILE_RECORDS 1181
PRODUCT_ID XYZ
TARGET_NAME MARS

NGAZETTEER_TABLE

OBJECT =
NAME =
INTERCHANGE_FORMAT = ASCII
ROWS = 1181
COLUMNS = 20
ROW_BYTES = 480
DESCRIPTION =

FIXED_LENGTH

"GAZETTER.TAB"

GAZETTEER_TABLE
"PLANETARY NOMENCLATURE GAZETTEER™

"The gazetteer (file: GAZETTER.TAB) is a

table of geographical features for a planet or satellite. It

Appendix A. PDS Data Object Definitions A-47

contains information about a named feature such as location, size,
origin of feature name, etc. The Gazetteer Table contains one row
for each feature named on the target body. The table is formatted
so that it may be read directly into many data management systems on
various host computers. All fields (columns) are separated by
commas, and character fields are preceded by double quotation marks.
Each record consist of 480 bytes, with a carriage return/line feed
sequence in bytes 479 and 480. This allows the table to be treated
as a fixed length record file on hosts that support this file type
and as a normal text file on other hosts."

OBJECT = COLUMN
NAME = TARGET_NAME
DATA_TYPE = CHARACTER
START_BYTE =2
BYTES = 20
FORMAT = "A20"
UNIT = "N/A™
DESCRIPTION = "The planet or satellite on which the
feature is located."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = SEARCH_FEATURE_NAME
DATA_TYPE = CHARACTER
START_BYTE = 25
BYTES = 50
FORMAT = "A50"
UNIT = "N/A™
DESCRIPTION = "The geographical feature name with all

diacritical marks stripped off. This name is stored in upper case
only so that it can be used for sorting and search purposes. This
field should not be used to designate the name of the feature
because it does not contain the diacritical marks. Feature names not
containing diacritical marks can often take on a completely
different meaning and in some cases the meaning can be deeply

offensive.”
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = DIACRITIC_FEATURE_NAME
DATA_TYPE = CHARACTER
START_BYTE =78
BYTES = 100
FORMAT = "A100"
UNIT = "N/A™
DESCRIPTION = "The geographical feature name

containing standard diacritical information. A detailed description
of the diacritical mark formats are described in the gazetteer
documentation.

DIACRITICALS USED IN THE TABLE

A-48

Appendix A. PDS Data Object Definitions

The word diacritic comes from a Greek word meaning to separate.
It refers to the accent marks employed to separate, or distinguish,
one form of pronunciation of a vowel or consonant from another.

This note is included to familiarize the user with the codes used
to represent diacriticals found in the table, and the values usually
associated with them. In the table, the code for a diacritical is
preceded by a backslash and is followed, without a space, by the
letter it is modifying.

This note is organized as follows: the code is listed first,
followed by the name of the accent mark, if applicable, a brief
description of the appearance of the diacritical and a short
narrative on its usage.

acute accent; a straight diagonal line extending from upper right to
lower left. The acute accent is used in most languages to lengthen a
vowel; in some, such as Oscan, to denote an open vowel. The acute
is also often used to indicate the stressed syllable; in some
transcriptions it indicates a palatalized consonant.

diaeresis or umlaut; two dots surmounting the letter. In Romance
languages and English, the diaeresis is used to indicate that
consecutive vowels do not form a dipthong (see below); in modern
German and Scandinavian languages, it denotes palatalization of
vowels.

circumflex; a chevron or inverted "v" shape, with the apex at the
top. Used most often in modern languages to indicate lengthening of
a vowel.

tilde; a curving or waving line above the letter. The tilde is a
form of circumflex. The tilde is used most often in Spanish to form
a palatalized n as in the word "ano", pronounced "anyo". It is
also used occasionally to indicate nasalized vowels.

macron; a straight line above the letter. The macron is used almost
universally to lengthen a vowel.

breve; a concave semicircle or "u® shape surmounting the letter.
Originally used in Greek, the breve indicates a short vowel.

a small circle or "o
Scandinavian languages to indicate a broad

above the letter. Frequently used in
0"

e dipthong or ligature; transcribed as two letters in contact with

each other. The dipthong is a combination of vowels that are

pronounced together.

cedilla; a curved line surmounted by a vertical line, placed at the
bottom of the letter. The cedilla is used in Spanish and French to
denote a dental, or soft, "c In the new Turkish transcription,
"c" cedilla has the value of English "ch®". In Semitic languages,
the cedilla under a consonant indicates that it is emphatic.

Appendix A. PDS Data Object Definitions A-49

check or inverted circumflex; a "v" shape above the letter. This
accent is used widely in Slavic languages to indicate a palatal
articulation, like the consonant sounds in the English words chapter
and shoe and the "zh*" sound in pleasure.

a single dot above the letter. This diacritical denotes various
things; in Lithuanian, it indicates a close long vowel. In Sanskrit,
when used with "n®", it is a velar sound, as in the English "sink";
in Irish orthography, it indicates a fricative consonant (see
below).

accent grave; a diagonal line (above the letter) extending from
upper left to lower right. The grave accent is used in French,
Spanish and Italian to denote open vowels.

fricative; a horizontal line through a consonant. A fricative
consonant is characterized by a frictional rustling of the breath as
it is emitted.”

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MINIMUM_LATITUDE
DATA_TYPE = REAL
START_BYTE = 180
BYTES =7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The minimum_latitude element specifies

the southernmost latitude of a spatial area, such as a map, mosaic,
bin, feature, or region."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MAXIMUM_LATITUDE
DATA_TYPE = REAL
START_BYTE = 188
BYTES =7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The maximum_latitude element specifies

the northernmost latitude of a spatial area, such as a map, mosaic,
bin, feature, or region."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = CENTER_LATITUDE
DATA_TYPE = REAL
START_BYTE = 196
BYTES =7
FORMAT = "F7.2"
UNIT = DEGREE

DESCRIPTION = "The center latitude of the feature."

A-50

Appendix A. PDS Data Object Definitions

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MINIMUM_LONGITUDE
DATA_TYPE = REAL
START_BYTE = 204
BYTES =7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The minimum_longitude element
specifies the easternmost Iatltude of a spatial area, such as a
map, mosaic, bin, feature, or region.
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MAXIMUM_LONGITUDE
DATA_TYPE = REAL
START_BYTE = 212
BYTES =7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The maximum_longitude element specifies
the westernmost longitude of a spatial area, such as a map, mosaic,
bin, feature, or region. "
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = CENTER_LONGITUDE
DATA_TYPE = REAL
START_BYTE = 220
BYTES =7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The center longitude of the feature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = LABEL_POSITION_ID
DATA_TYPE = CHARACTER
START_BYTE = 229
BYTES =2
FORMAT = "A2"
UNIT = "N/A™
DESCRIPTION = "The suggested plotting position of the

feature name (UL=Upper left, UC=Upper center,
CL=Center left, CR=Center right, LL=Lower left,

UR=Upper right,
LC=Lower center,

LR=Lower right). This field is used to instruct the plotter where to
place the typographical label with respect to the center of the

feature.

This code is used to avoid crowding of names in areas

where there is a high density of named features."

END_OBJECT

OBJECT
NAME

COLUMN

COLUMN
FEATURE_LENGTH

Appendix A. PDS Data Object Definitions A-51

DATA_TYPE = REAL

START_BYTE = 233

BYTES =8

FORMAT = "Fg.2"

UNIT = KILOMETER

DESCRIPTION = "The longer or longest dimension of an

object. For the Gazetteer usage, this field refers to the length of
the named feature.”

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = PRIMARY_PARENTAGE_ID
DATA_TYPE = CHARACTER
START_BYTE = 243
BYTES =2
FORMAT = "A2"
UNIT = "N/A"
DESCRIPTION = "This field contains the primary origin
of the feature name (i.e. where the name originated). It contains

a code for the continent or country origin of the name. Please see
Appendix 5 of the gazetteer documentation (GAZETTER.TXT) for a
definition of the codes used to define the continent or country."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = SECONDARY_PARENTAGE_ID
DATA_TYPE = CHARACTER
START_BYTE = 248
BYTES =2
FORMAT = "A2"
UNIT = "N/A™
DESCRIPTION = "This field contains the secondary

origin of the feature name. It contains a code for a country, state,
territory, or ethnic group. Please see Appendix 5 of the gazetteer
documentation (GAZETTER.TXT) for a defintion of the codes in this

field."”
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MAP_SERIAL_ID
DATA_TYPE = CHARACTER
START_BYTE = 253
BYTES =6
FORMAT = "A6"
UNIT = "N/A™
DESCRIPTION = "The identification of the map that

contains the named feature. This field represents the map serial
number of the map publication used for ordering maps from the U.S.
Geological Survey. The map identified in this field best portrays
the named feature.”

END_OBJECT COLUMN

OBJECT COLUMN

A-52

Appendix A. PDS Data Object Definitions

NAME = FEATURE_STATUS_TYPE

DATA_TYPE = CHARACTER

START_BYTE = 262

BYTES = 12

FORMAT = "Al12"

UNIT = "N/A™

DESCRIPTION = "The 1AU approval status of the named

feature. Permitted values are "PROPOSED", "PROVISIONAL®", "l1AU-
APPROVED®, and "DROPPED". Dropped names have been disallowed by the
IAU. However, these features have been included in the gazetteer for
historical purposes. Some named features that are disallowed by the
IAU may commonly be used on some maps."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = APPROVAL_DATE
DATA_TYPE = INTEGER
START_BYTE = 276
BYTES =4
FORMAT = "14"
UNIT = "N/A™
DESCRIPTION = "Date at which an object has been

approved by the officially sanctioned organization. This field
contains the year the IAU approved the feature name."

END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION

= COLUMN

= COLUMN

FEATURE_TYPE

CHARACTER

282

20

= "A20"

= "N/A™

= "The feature type identifies the type of

a particular feature, according to IAU standards. Examples are

"CRATER", "TESSERA",

"TERRA", etc. See Appendix 7 of the gazetteer

documentation (GAZETTER.TXT).

DESCRIPTOR TERMS (FEATURE TYPES)

FEATURE

ALBEDO FEATURE
CATENA

CAVUS

CHAOS

CHASMA

COLLES

CORONA

CRATER

DORSUM
ERUPTIVE CENTER
FACULA

FLEXUS

FLUCTUS

DESCRIPTION

Albedo feature

Chain of craters

Hollows, irregular depressions
Distinctive area of broken terrain
Canyon

Small hill or knob
Ovoid-shaped feature

Crater

Ridge

Eruptive center

Bright spot

Cuspate linear feature

Flow terrain

Appendix A. PDS Data Object Definitions A-53

FOSSA Long, narrow, shallow depression
LABES Landslide
LABYRINTHUS Intersecting valley complex
LACUS Lake
LARGE RINGED FEATURE Large ringed feature
LINEA Elongate marking
MACULA Dark spot
MARE Sea
MENSA Mesa, flat-topped elevation
MONS Mountain
OCEANUS Ocean
PALUS Swamp
PATERA Shallow crater; scalloped, complex edge
PLANITIA Low plain
PLANUM Plateau or high plain
PROMONTORIUM Cape
REGIO Region
RIMA Fissure
RUPES Scarp
SCOPULUS Lobate or irregular scarp
SINUS Bay
SULCUS Subparallel furrows and ridges
TERRA Extensive land mass
TESSERA Tile; polygonal ground
THOLUS Small domical mountain or hill
UNDAE Dunes
VALLIS Sinuous valley
VASTITAS Widespread lowlands
VARIABLE FEATURE Variable feature "
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = REFERENCE_NUMBER
DATA_TYPE = INTEGER
START_BYTE = 304
BYTES =4
FORMAT = "14"
UNIT = "N/A"
DESCRIPTION = "Literature reference from which the

spelling and description of the feature name was derived. See
Appendix 6 of the gazetteer documentation (GAZETTER.TXT)."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MAP_CHART_ID
DATA_TYPE = CHARACTER
START_BYTE = 310
BYTES =6
FORMAT = "A6"
UNIT = "N/A"
DESCRIPTION = "This field contains the abbreviation of
the map designator or chart identification (example MC-19, MC-18,
etc.)."

END_OBJECT = COLUMN

A-54 Appendix A. PDS Data Object Definitions

OBJECT = COLUMN
NAME = FEATURE_DESCRIPTION
DATA_TYPE = CHARACTER
START_BYTE = 319
BYTES = 159
FORMAT = "A159"
UNIT = "N/A™
DESCRIPTION = "Short description of the feature name."
END_OBJECT = COLUMN
END_OBJECT = GAZETTEER_TABLE

END

Appendix A. PDS Data Object Definitions A-55

A.l7 HEADER

The HEADER object is used to identify and define the attributes of commonly used header data
structures such as VICAR or FITS. These structures are usually system or software specific and
are described in detail in a referenced description text file. The use of BYTES within the header
object refers to the number of bytes for the entire header, not a single record.

A.17.1 Required Keywords

1. BYTES
2. HEADER_TYPE

A.17.2 Optional Keywords

1. DESCRIPTION
2. INTERCHANGE_FORMAT
3. RECORDS

A.17.3 Required Objects

None

A.17.4 Optional Objects

None

A.17.5 Example

The following example shows the detached label file “TIMTCO02A.LBL”. The label describes the
data product file “TIMTCO02A.IMG” which contains a HEADER object followed by an IMAGE
object.

PDS_VERSION_ID = PDS3
/* PDS label for a TIMS image */
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 638
FILE_RECORDS = 39277

/* Pointers to objects */

A-56 Appendix A. PDS Data Object Definitions

~IMAGE_HEADER = ("TIMTCO2A.IMG",1)
N MAGE = ("TIMTCO2A.IMG",2)

/* Image description */

DATA_SET_ID = "C130-E-TIMS-2-EDR-IMAGE-V1.0"
PRODUCT_ID "TIMTCO2A™

INSTRUMENT_HOST_NAME "NASA C-130 AIRCRAFT™"

INSTRUMENT_NAME "THERMAL INFRARED MULTISPECTRAL SCANNER™
TARGET_NAME EARTH

FEATURE_NAME "TRAIL CANYON FAN"

START_TIME = 1989-09-29T21:47:35
STOP_TIME = 1989-09-29T21:47:35
CENTER_LATITUDE = 36.38
CENTER_LONGITUDE = 116.96
INCIDENCE_ANGLE = 0.0
EMISSION_ANGLE = 0.0
/* Description of objects */
OBJECT = IMAGE_HEADER
BYTES = 638
RECORDS =1
HEADER_TYPE = VICAR2
INTERCHANGE_FORMAT = BINARY
~DESCRIPTION = "VICAR2.TXT"
END_OBJECT = IMAGE_HEADER
OBJECT = IMAGE
LINES = 6546
LINE_SAMPLES = 638
SAMPLE_TYPE = UNSIGNED_INTEGER
SAMPLE_BITS =8
SAMPLE_BIT_MASK = 2#11111111#
BANDS =6
BAND_STORAGE_TYPE = LINE_INTERLEAVED
END_OBJECT = IMAGE

END

Appendix A. PDS Data Object Definitions A-57

A.18 HISTOGRAM

The HISTOGRAM obiject is a sequence of numeric values that provides the number of
occurrences of a data value or a range of data values in a data object. The number of items in a
histogram will normally be equal to the number of distinct values allowed in a field of the data
object. For example, an 8-bit integer field can have a maximum of 256 values, and would result
in a 256 item histogram. HISTOGRAMSs may be used to bin data, in which case an offset and
scaling factor indicate the dynamic range of the data represented.

The following equation allows the calculation of the range of each bin in the histogram:

bin_lower_boundary = bin_element * SCALING_FACTOR + OFFSET

A.18.1 Required Keywords

1. ITEMS
2. DATA_TYPE
3. ITEM_BYTES

A.18.2 Optional Keywords

BYTES
INTERCHANGE_FORMAT
OFFSET
SCALING_FACTOR

N

A.18.3 Required Objects

None

A.18.4 Optional Objects

None

A.185 Example

A-58

Appendix A. PDS Data Object Definitions

PDS_VERSION_ID = PDS3
/* FILE FORMAT AND LENGTH */

RECORD_TYPE FIXED_LENGTH

RECORD_BYTES = 956

FILE_RECORDS = 965

LABEL_RECORDS =3

/* POINTERS TO START RECORDS OF OBJECTS IN FILE */
N MAGE_HISTOGRAM =4

N MAGE =6

/* IMAGE DESCRIPTION */

DATA_SET_ID "V01/V02-M-V1S-5-DIM-V1.0"
PRODUCT_ID ""MG15N022-GRN-666A™

SPACECRAFT_NAME
TARGET_NAME

VIKING_ORBITER_1
MARS

START_TIME = 1978-01-14T02:00:00
STOP_TIME = 1978-01-14T02:00:00
SPACECRAFT_CLOCK_START _TIME = UNK
SPACECRAFT_CLOCK_STOP_TIME = UNK
PRODUCT_CREATION_TIME = 1995-01-01T00:00:00
ORBIT_NUMBER = 666

FILTER_NAME = GREEN

IMAGE_1D = "MG15N022-GRN-666A"

INSTRUMENT _NAME {VISUAL_IMAGING_SUBSYSTEM_CAMERA_A,
VISUAL_IMAGING_SUBSYSTEM_CAMERA_B}

NOTE "MARS MULTI-SPECTRAL MDIM SERIES'

/* SUN RAYS EMISSION, INCIDENCE, AND PHASE ANGLES OF IMAGE CENTER*/

SOURCE_PRODUCT_ID = ""666A36"
EMISSION_ANGLE = 21.794
INCIDENCE_ANGLE = 66.443
PHASE_ANGLE = 46.111
/* DESCRIPTION OF OBJECTS CONTAINED IN FILE */
OBJECT = IMAGE_HISTOGRAM
ITEMS = 256
DATA_TYPE = VAX_INTEGER
ITEM_BYTES =4
END_OBJECT = IMAGE_HISTOGRAM
OBJECT = IMAGE
LINES = 960
LINE_SAMPLES = 956
SAMPLE_TYPE = UNSIGNED_INTEGER
SAMPLE_BITS =8
SAMPLE_BIT_MASK = 2#11111111#
CHECKSUM = 65718982

/* 1/F = SCALING_FACTOR*DN

+

OFFSET, CONVERT TO INTENSITY/FLUX */

Appendix A. PDS Data Object Definitions A-59

SCALING_FACTOR
OFFSET

0.001000
0.0

/* OPTIMUM COLOR STRETCH FOR DISPLAY OF COLOR IMAGES */

STRETCHED_FLAG = FALSE

STRETCH_MINIMUM = (53, 0

STRETCH_MAXIMUM = (133,255)
END_OBJECT = IMAGE

END

A-60 Appendix A. PDS Data Object Definitions

A.19 HISTORY

A HISTORY object is a dynamic description of the history of one or more associated data
objects in a file. It supplements the essentially static description contained in the PDS label.

The HISTORY object contains text in a format similar to that of the ODL statements used in the
label. It identifies previous computer manipulation of the principal data object(s) in the file. It
includes an identification of the source data, processes performed, processing parameters, as well
as dates and times of processing. It is intended that the history be available for display, be
dynamically extended by any process operating on the data, and be automatically propagated to
the resulting data file. Eventually, it might be extracted for loading in detailed level catalogs of
data set contents.

The HISTORY object is structured as a series of History Entries, one for each process which has
operated on the data. Each entry contains a standard set of ODL element assignment statements,
delimited by “GROUP = program_name” and “END_GROUP = program_name” statements. A
subgroup in each entry, delimited by “GROUP = PARAMETERS” and “END_GROUP =
PARAMETERS?”, contains statements specifying the values of all parameters of the program.

A.19.1 HISTORY ENTRY ELEMENTS

Attribute Description

VERSION_DATE Program version date, 1SO standard format.
DATE_TIME Run date and time, ISO standard format.
NODE_NAME Network name of computer.
USER_NAME Username.

SOFTWARE_DESC Program-generated (brief) description.
USER_NOTE User-supplied (brief) description.

Unlike the above elements, the names of the parameters defined in the PARAMETERS subgroup
are uncontrolled, and must only conform to the program.

The last entry in a HISTORY object is followed by an END statement. The HISTORY object, by
convention, follows the PDS label of the file, beginning on a record boundary, and is located by
a pointer statement in the label. There are no required elements for the PDS label description of
the object; it is represented in the label only by the pointer statement, and OBJECT = HISTORY
and END_OBJECT = HISTORY statements.

The HISTORY capability has been implemented as part of the Integrated Software for Imaging
Spectrometers (ISIS) system (see QUBE object definition). ISIS QUBE applications add their
own entries to the QUBE file’s cumulative HISTORY object. I1SIS programs run under NASA's
TAE (Transportable Applications Executive) system, and are able to automatically insert all
parameters of their TAE procedure into the HISTORY entry created by the program. Consult the

Appendix A. PDS Data Object Definitions A-61

ISIS System Design document for details and limitations imposed by that system. (See the
QUBE object description for further references.)

A.19.2 Required Keywords

None

A.19.3 Optional Keywords

None

A.19.4 Required Objects

None

A.19.5 Optional Objects

None

A.19.6 Example

The following single-entry HISTORY object is from a Vicar-generated PDS-labeled QUBE file.
(See the QUBE object example.) There is only one entry because the QUBE (or rather its label)
was generated by a single program, VISIS. A QUBE generated by multiple ISIS programs would
have multiple history entries, represented by multiple GROUPs in the HISTORY object.

The diagram following illustrates the placement of the example HISTORY object within a
QUBE data product with an attached PDS label.

A-62 Appendix A. PDS Data Object Definitions

CCSD...
. PDS
AHISTORY = LABEL
END
GROUP=VISIS
HISTORY
END-GROUP=VISIS
END
QUBE
OBJECT = HISTORY
GROUP = VISIS
VERSION_DATE = 1990-11-08
DATE_TIME = 1991-07-25T10:12:52
SOFTWARE_DESC = "ISIS cube file with PDS label has
been generated as systematic product by MIPL using the following

programs:

NIMSMERGE to create EDR"s;

NIMSCMM to create the merged mosaic & geometry cube;
HIST2D to create a two-dimensional histogram;
SPECPLOT to create the spectral plots;

TRAN, F2, and INSERT3D to create the Sll cube;

VISIS to create the ISIS cube."

USER_NOTE = "VPDIN1/ Footprint, Limbfit,
Height=50"
GROUP = PARAMETERS

EDR_FILE_NAME =""

/*EDR accessed through MIPL Catalog*/
IMAGE_ID = NULL

SPICE_FILE_NAME = "N/A™

SPIKE_FILE_NAME “MIPL:[MIPL._GLL]BOOM_OBSCURATION.NIM"
DARK_VALUE_FILE_NAME "N/A™

CALIBRATION_FILE_NAME ""NDAT:NIMSGS2.CAL"
MERGED_MOSAIC_FILE_NAME "NDAT:VPDIN1_DN_FP_LF H50.CUB"

DARK_ INTERPOLATION_TYPE = NOUPDAT
PHOTOMETRIC_CORRECTION_TYPE = NONE
CUBE_NIMSEL_TYPE = NOCAL
BINNING_TYPE = FOOTPRNT
FILL_BOX_SIZE =0
FILL_MIN_VALID_PIXELS =0

SUMMARY _IMAGE_RED_ID =0

Appendix A. PDS Data Object Definitions

SUMMARY _IMAGE_GREEN_ID
SUMMARY _IMAGE_BLUE_ID
ADAPT_STRETCH_SAT_FRAC
ADAPT_STRETCH_SAMP_FRAC
RED_STRETCH_RANGE
GREEN_STRETCH_RANGE
BLUE_STRETCH_RANGE
END_GROUP

END_GROUP

END_OBJECT

END

Inmmnn
~AA\\OOOoOOo

A-63

000000
000000
0, 0)
0, 0)
0, 0)
PARAMETERS
VISIS
HISTORY

A-64 Appendix A. PDS Data Object Definitions

A.20 IMAGE

An IMAGE object is a two-dimensional array of values, all of the same type, each of which is
referred to as a sample. IMAGE objects are normally processed with special display tools to
produce a visual representation of the samples by assigning brightness levels or display colors to
the values. An IMAGE consists of a series of lines, each containing the same number of samples.

The required IMAGE keywords define the parameters for simple IMAGE objects:

LINES is the number of lines in the image.

LINE_SAMPLES is the number of samples in each line.
SAMPLE_BITS is the number of bits in each individual sample.
SAMPLE_TYPE defines the sample data type.

In more complex images, each individual line may have some attached data which are not part of
the image itself (engineering data, checksums, time tags, etc.). In this case the additional, non-
image parameters are accounted for as either LINE_PREFIX_BYTES or
LINE_SUFFIX_BYTES, depending on whether they occur before or after the image samples in
the line. These keywords indicate the total number of bytes used for the additional data, so that
software processing the image can clip these bytes before attempting to display or manipulate the
image. The structure of the prefix or suffix bytes is most often defined by a TABLE object (in
the same label), which will itself have ROW_SUFFIX_BYTES or ROW_PREFIX_BYTES, to
allow table-processing software to skip over the image data. Figure A.1 illustrates the layout of
prefix and suffix bytes around an image.

LINES=10 —€— LINE SAMPLES = 15 —p Record
3 |
P
R U 2
E F
F F
| |
X X .
10
AN

\ SAMPLE BITS =8

SAMPLE_TYPE = UNSIGNED_INTEGER

Figure A.1 — Prefix and Suffix Bytes Attached to an Image

Appendix A. PDS Data Object Definitions A-65

Sometimes a single image is composed of several bands of data. For example, a color image for
video display may actually consist of three copies of the image: one in red, one in green and one
in blue. Each logical sample corresponds to one value for each of the bands. In this case, the
keyword BANDS is used to indicate the presence of multiple bands of data.
BAND_STORAGE_TYPE indicates how the banded values are organized:

* SAMPLE_INTERLEAVED means that in each line, all band values for each sample are
adjacent in the line. So in the above example of an RGB image, each line would look like
this (numbers are sample numbers, RGB = red, green, blue):

1R 1G 1B 2R 2G 2B 3R 3G 3B ...

* LINE_INTERLEAVED means that successive lines contain the band values for
corresponding samples. Continuing with the RGB example, the first physical lines in the
image data would represent the first display line of the image, first in red, then green,
then blue:

1R 2R 3R 4R ...
1G 2G 3G 4G ...
1B 2B 3B 4B ...

By default, IMAGE objects should be displayed so that the lines are drawn from left to right and
top to bottom. Other organizations can be indicated by using the LINE_DISPLAY_DIRECTION
and SAMPLE_DISPLAY_DIRECTION keywords. Figure A.2 illustrates band storage schemes

and the related keyword values.

A-66 Appendix A. PDS Data Object Definitions

BANDS = 3, BAND_STORAGE_TYPE = BAND_SEQUENTIAL BAND_STORAGE_TYPE=LINE_INTERLEAVED

LINE 1
BLUE o IQHHI” II\IwI&

~MNGREEN LINE 3
LINE 1 T S LINE 4
LINE 2 RED X LINE 5
LINE 3 UNE 6
LINE 4 e
LINE ¢ e ©
LINE 7 LINE 9
LINE 8 ETC...

BAND_NAME = (RED, GREEN, BLUE)

BAND_STORAGE_TYPE=SAMPLE_INTERLEAVED

LINE 1 k \\ §
LINE 2 & \\ \\\\
LINE 3 & \\ §
LINE 4 & k §
ETC...

Figure A.2 — Keywords for a Multi-Band Image

A.20.1 Required Keywords

LINES
LINE_SAMPLES
SAMPLE_TYPE
SAMPLE_BITS

PoONME

A.20.2 Optional Keywords

BAND_SEQUENCE
BAND_STORAGE_TYPE
BANDS

CHECKSUM
DERIVED_MAXIMUM

agkrwdPE

Appendix A. PDS Data Object Definitions

DERIVED_MINIMUM
DESCRIPTION
ENCODING_TYPE
FIRST_LINE

.FIRST_LINE_SAMPLE

. INVALID_CONSTANT

. LINE_PREFIX_BYTES

. LINE_SUFFIX_BYTES

. MISSING _CONSTANT

. OFFSET

. SAMPLE_BIT_MASK

. SAMPLING_FACTOR

. SCALING_FACTOR

. SOURCE_FILE_NAME

. SOURCE_LINES

. SOURCE_LINE_SAMPLES
. SOURCE_SAMPLE_BITS
. STRETCHED_FLAG

. STRETCH_MINIMUM

. STRETCH_MAXIMUM

A.20.3 Required Objects

None

A.20.4 Optional Objects

None

A.20.5 Example

A-67

This is an example of an (attached) IMAGE label for a color digital mosaic image from the Mars

Digital Image Map CD-ROM:s. It includes a CHECKSUM to support automated volume

production and validation, a SCALING_FACTOR to indicate the relationship between sample
values and geophysical parameters and stretch keywords to indicate optimal values for image
display.

PDS_VERSION_ID

RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

PDS3

FIXED_LENGTH
956

965

3

A-68

N MAGE_HISTOGRAM
N MAGE

DATA_SET_ID

PRODUCT_ID

SPACECRAFT_NAME

TARGET_NAME

IMAGE_TIME

START_TIME

STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
PRODUCT_CREATION_TIME
ORBIT_NUMBER

FILTER_NAME

IMAGE_ID

INSTRUMENT _NAME

NOTE
SOURCE_PRODUCT_ID
EMISSION_ANGLE
INCIDENCE_ANGLE
PHASE_ANGLE

Appendix A. PDS Data Object Definitions

4
6

"V01/V02-M-V1S-5-DIM-V1.0"
""MG15N022-GRN-666A""
VIKING_ORBITER_1

MARS

1978-01-14T02:00:00

UNK

UNK

UNK

UNK

1995-01-01T00:00:00

666

GREEN

""MG15N022-GRN-666A""
{VISUAL_IMAGING_SUBSYSTEM_CAMERA_A,
VISUAL_IMAGING_SUBSYSTEM_CAMERA_B}
"MARS MULTI-SPECTRAL MDIM SERIES"
"'666A36"

21.794

66.443

46.111

/* DESCRIPTION OF OBJECTS CONTAINED IN FILE */
OBJECT = IMAGE_HISTOGRAM
ITEMS = 256
DATA_TYPE = VAX_INTEGER
ITEM_BYTES =4
END_OBJECT = IMAGE_HISTOGRAM
OBJECT = IMAGE
LINES = 960
LINE_SAMPLES = 956
SAMPLE_TYPE = UNSIGNED_INTEGER
SAMPLE_BITS =8
SAMPLE_BIT_MASK = 2#11111111#
CHECKSUM = 65718982
SCALING_FACTOR = 0.001000
/* 1/F = scaling factor*DN+offset, */
/* convert to intensity/flux. */
OFFSET = 0.0
STRETCHED_FLAG = FALSE

STRETCH_MINIMUM
STRETCH_MAXIMUM
END_OBJECT

END

/* Optimum color stretch for display */
/* of color images. */
(53, 0)

(133,255)

IMAGE

Appendix A. PDS Data Object Definitions A-69

A.21 INDEX_TABLE

The INDEX_TABLE object is a specific type of a TABLE object that provides information
about the data stored on an archive volume. The INDEX_TABLE contains one row for each data
file (or data product label file, in the case where detached labels are used) on the volume. The
table is formatted so that it may be read directly by many data management systems on various
host computers: all fields (columns) are separated by commas; character fields are enclosed in
double quotation marks; and each record ends in a carriage return/line feed sequence.

The columns of an INDEX_TABLE contain path information for each file, plus values extracted
from keywords in the PDS labels. Columns are selected to allow users to a) search the table for
specific files of interest; and b) identify the exact location of the file both on the volume and in
the PDS catalog. In general, the columns listed in Section A.20.5.1 as optional are used for
searching the table; the required columns listed in Section A.20.4.1 provide the identification
information for each file. Where possible the PDS keyword name should be used as the NAME
value in the corresponding COLUMN definition.

Note: See Section 17.2 for information about the use of the constants “N/A”, “UNK” and
“NULL” in an INDEX_TABLE.

A.21.1 INDEX_TABLEs Under Previous Version of the Standards

Prior to version 3.2 of the Standards, the INDEX_TYPE keyword was optional. Cumulative
indices were identified by their filenames, which were (and still are) of the form
“CUMINDEX.TAB” or “axxCMIDX.TAB” (with axx representing up to three alphanumeric
characters). So, when INDEX_TYPE is not present, it defaults to “CUMULATIVE” in
cumulative index files (that is, file with filenames as above) and “SINGLE” in all other index
files.

A.21.2 Required Keywords

INTERCHANGE_FORMAT
ROWS

COLUMNS

ROW_BYTES
INDEX_TYPE

ISAEE A

A.21.3 Optional Keywords

1. NAME
2. DESCRIPTION
3. INDEXED_FILE_NAME

A-70 Appendix A. PDS Data Object Definitions

4. UNKNOWN_CONSTANT
5. NOT_APPLICABLE_CONSTANT

A.21.4 Required Objects

1. COLUMN

A.21.41 Required COLUMN Objects

The following COLUMN objects (as identified by the COLUMN_NAME keyword) are required
to be included in the INDEX_TABLE object:

COLUMN_NAME

FILE_SPECIFICATION_NAME, or PATH_NAME and FILE_NAME
PRODUCT_ID ™

VOLUME_ID *

DATA SET_ID”

PRODUCT_CREATION_TIME "

LOGICAL_VOLUME_PATH_NAME "~ (must be used with PATH_NAME
and FILE_NAME for a logical volume)

Sk~ wn PR

* If the value is constant across the data in the index table, this keyword can appear
in the index table’s label. If the value is not constant, then a column of the given name
must be used.

wx PRODUCT _ID is not required if it has the same value as FILE_NAME or
FILE_SPECIFICATION_NAME.

A.21.4.2 Required Keywords (for Required COLUMN Objects)

NAME
DATA_TYPE
START_BYTE
BYTES
DESCRIPTION

SAEIE A

A.21.5 Optional Objects

None

A.21.5.1 Optional COLUMN Objects (NAME=)

Appendix A. PDS Data Object Definitions A-71
The following COLUMN objects (as identified by the COLUMN_NAME keyword) may be
optionally included in the INDEX_TABLE object:
COLUMN_NAME
1. MISSION_NAME
2. INSTRUMENT_NAME (or ID)
3. INSTRUMENT_HOST_NAME (or ID), or SPACECRAFT_NAME (or ID)
4. TARGET_NAME
5. PRODUCT_TYPE
6. MISSION_PHASE_NAME
7. VOLUME_SET_ID
8. START_TIME
9. STOP_TIME
10. SPACECRAFT_CLOCK_START_COUNT
11. SPACECRAFT_CLOCK_STOP_COUNT
12. any other search columns
A.21.6 Example
PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 180
FILE_RECORDS = 220
DESCRIPTION = "INDEX.TAB lists all data files on this
volume™
~INDEX_TABLE = "INDEX.TAB"
OBJECT = INDEX_TABLE
INTERCHANGE_FORMAT = ASCI11
ROW_BYTES = 180
ROWS = 220
COLUMNS =9
INDEX_TYPE = SINGLE
INDEXED_FILE_NAME = {"*_AMD","*_ION","*_TIM","*_TRO",
R OWEAM,UROLITT, U OMIEFET, Y OMPDY,
“'*_ODF","*_ODR","*_0ODS","*_SFO",
"'*_SOE","*_TDF"}
OBJECT = COLUMN
NAME = VOLUME_ID
DESCRIPTION = "ldentifies the volume containing the
named file"
DATA_TYPE = CHARACTER
START_BYTE =2
BYTES =9
END_OBJECT = COLUMN

A-72 Appendix A. PDS Data Object Definitions

OBJECT = COLUMN
NAME = DATA_SET_ID
DESCRIPTION = "The data set identifier. Acceptable
values include *MO-M-RSS-1-OIDR-V1.0”"
DATA_TYPE = CHARACTER
START_BYTE = 14
BYTES = 25
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = PATH_NAME
DESCRIPTION = "Path to directory containing file.
Acceptable values include:
"AMD",
"ION",
"TIM®,
"*TRO",
"WEA",
LIT",
"MIF®,
"*MPD",
"ODF",
"ODR",
"oDs",
"SFO",
"SOE*", and
"TDF"."
DATA_TYPE = CHARACTER
START_BYTE = 42
BYTES =9
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = FILE_NAME
DESCRIPTION = "Name of file in archive”
DATA_TYPE = CHARACTER
START_BYTE = 54
BYTES =12
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = PRODUCT_ID
DESCRIPTION = "Original file name on MO PDB or SOPC"
DATA_TYPE = CHARACTER
START_BYTE = 69
BYTES = 33
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = START_TIME
DESCRIPTION = "Time at which data in the file begin
given in the format "YYYY-MM-DDThh:mm:ss®."
DATA_TYPE = CHARACTER

START_BYTE = 105

Appendix A. PDS Data Object Definitions

BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

A-73
19
COLUMN

COLUMN
STOP_TIME

= "Time at which data in the file end

given in the format "YYYY-MM-DDThh:mm:ss®."
= CHARACTER

DATA_TYPE

START_BYTE

BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION
DATA_TYPE
START_BYTE
BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_TYPE

START_BYTE

BYTES
END_OBJECT

END_OBJECT
END

127
19
COLUMN

COLUMN

PRODUCT_CREATION_TIME

"Date and time that file was created.”
CHARACTER

149

19

COLUMN

COLUMN

FILE_SIZE

"Number of bytes in file, not including
label . "

"ASCII INTEGER"

170

9

COLUMN

INDEX_TABLE

A-74 Appendix A. PDS Data Object Definitions

A22 PALETTE

The PALETTE object, a sub-class of the TABLE object, contains entries which represent color
table assignments for values (i.e., SAMPLESs) contained in an IMAGE.

If the PALETTE is stored in a separate file from the IMAGE object, then it should be stored in
ASCII format as 256 rows, each with 4 columns. The first column contains the SAMPLE value
(running from 0-255 for an 8-bit SAMPLE, for example), and the remaining three columns
contain the relative amount (a value from 0 to 255) of each primary color to be assigned for that
SAMPLE value.

If the PALETTE is stored in the same file as the IMAGE object, then the PALETTE should be
stored in BINARY format as 256 consecutive 8-bit values for each primary color (RED,
GREEN, BLUE) resulting in a 768-byte record.

A.22.1 Required Keywords

INTERCHANGE_FORMAT
ROWS

ROW_BYTES

COLUMNS

el N

A.22.2 Optional Keywords

1. DESCRIPTION
2. NAME

A.22.3 Required Objects

1. COLUMN

A.22.4 Optional Objects

None

A.225 Example

The examples below illustrate both types of PALETTE objects (ASCII and BINARY). The first
is example is a complete label for an ASCII PALETTE object:

PDS_VERSION_ID = PDS3

Appendix A. PDS Data Object Definitions A-75

FIXED_LENGTH
80

256
"PALETTE.TAB"

RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
~PALETTE

/* Image Palette description */

SPACECRAFT_NAME = MAGELLAN
MISSION_PHASE_NAME = PRIMARY_MISSION
TARGET_NAME = VENUS

PRODUCT_ID ="GEDR-MERC.1;2"

IMAGE_ID ="GEDR-MERC.1;2"
INSTRUMENT_NAME ="RADAR SYSTEM"
PRODUCT_CREATION_TIME = 1995-01-01T00:00:00

NOTE = "Palette for browse image"

/* Description of an ASCIl PALETTE object */

OBJECT = PALETTE
INTERCHANGE_FORMAT = ASCII
ROWS = 256
ROW_BYTES = 80
COLUMNS =4
OBJECT = COLUMN
NAME = SAMPLE
DESCRIPTION = "DN value for red, green, blue
intensities”
DATA_TYPE = ASCII_INTEGER
START_BYTE =1
BYTES =3
END_OBJECT
OBJECT = COLUMN
NAME = RED
DESCRIPTION = "Red intensity (0 - 255)"
DATA_TYPE = ASCII_INTEGER
START_BYTE =6
BYTES =3
END_OBJECT
OBJECT = COLUMN
NAME = GREEN
DESCRIPTION = "Green intensity (0 — 255)"
DATA_TYPE = ASCII_INTEGER
START_BYTE =11
BYTES =3
END_OBJECT
OBJECT = COLUMN
NAME = BLUE
DESCRIPTION = "Blue intensity (0 — 255)"
DATA_TYPE = ASCII_INTEGER
START_BYTE = 16

BYTES =3

A-76

END_OBJECT
END_OBJECT
END

Appendix A. PDS Data Object Definitions

This label fragment illustrates the definition of a binary PALETTE object:

/* Description of a BINARY PALETTE object */

OBJECT
INTERCHANGE_FORMAT
ROWS
ROW_BYTES
COLUMNS

OBJECT
NAME
DATA_TYPE
START_BYTE
ITEMS
ITEM_BYTES
END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
ITEMS
ITEM_BYTES
END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
ITEMS
ITEM_BYTES
END_OBJECT
END_OBJECT

PALETTE
BINARY
1

768

3

COLUMN

RED
UNSIGNED_INTEGER
1

256

1

COLUMN

COLUMN

GREEN
UNSIGNED_INTEGER
257

256

1

COLUMN

COLUMN

BLUE
UNSIGNED_INTEGER
513

256

1

COLUMN

PALETTE

Appendix A. PDS Data Object Definitions A-77

A.23 QUBE

A generalized QUBE object is a multidimensional array (called the core) of sample values in
multiple dimensions. The core is homogeneous, and consists of unsigned byte, signed halfword
or floating point fullword elements. QUBES of one to three dimensions may have optional suffix
areas in each axis. The suffix areas may be heterogeneous, with elements of different types, but
each suffix pixel is always allocated a full word. Special values may be defined for the core and
the suffix areas to designate missing values and several kinds of invalid values, such as
instrument and representation saturation.

The QUBE is the principal data structure of the ISIS (Integrated Software for Imaging
Spectrometers) system. A frequently used specialization of the QUBE object is the I1SIS Standard
Qube, which is a three-dimensional QUBE with two spatial dimensions and one spectral
dimension. Its axes have the interpretations 'sample’, 'line’ and 'band'. Three physical storage
orders are allowed: band-sequential, line_interleaved (band-interleaved-by-line) and
sample_interleaved (band-interleaved-by-pixel).

An example of a Standard ISIS Qube is a spectral image qube containing data from an imaging
spectrometer. Such a qube is simultaneously a set of images (at different wavelengths) of the
same target area, and a set of spectra at each point of the target area. Typically, suffix areas in
such a qube are confined to 'backplanes’ containing geometric or quality information about
individual spectra, i.e. about the set of corresponding values at the same pixel location in each
band.

The following diagram illustrates the general structure of a Standard ISIS Qube. Note that this is
a conceptual or “logical” view of the qube.

EXPLODED VIEW of a CORE STRUCTURE
QUBE OBJECT
SPECTRAL
BACKPLANE (BANy L2222
SPATIAL =z =
(LINES)
CORE
SIDEPLANE
\
BOTTOMPLANE SPATIAL
(SAMPLES)

Figure A.3 — Exploded View of a Qube Object

A-78 Appendix A. PDS Data Object Definitions

Some special requirements are imposed by the I1SIS system. A QUBE object must be associated
with a HISTORY object. (Other objects, such as HISTOGRAMs, IMAGEs, PALETTESs and
TABLESs which contain statistics, display parameters, engineering values or other ancillary data,
are optional.) A special element, FILE_STATE, is required in the implicit FILE object. Some
label information is organized into GROUPs, such as BAND_BIN and
IMAGE_MAP_PROJECTION. The BAND_BIN group contains essential wavelength
information, and is required for Standard ISIS Qubes.

The ISIS system includes routines for reading and writing files containing QUBE objects. Both
'logical' access, independent of actual storage order, and direct 'physical’ access are provided for
Standard ISIS Qubes. Only physical access is provided for generalized QUBESs. Most ISIS
application programs operate on Standard ISIS Qubes. Arbitrary subqubes ('virtual' qubes) of
existing qubes may be specified for most of these programs. In addition, ISIS includes software
for handling Tables (an ISIS variant of the PDS Table object) and Instrument Spectral Libraries.

For a complete description, refer to the most recent version of “ISD: ISIS System Design, Build
2”, obtainable from the PDS Operator.

NOTE: The following required and optional elements of the QUBE object are 1SIS-specific.

Since the ISIS system was designed before the current version of the Planetary Science Data
Dictionary, some of the element names conflict with current PDS nomenclature standards.

A.23.1 Required Keywords (Generalized Qube and Standard ISIS Qube)

AXES Number of axes or dimensions of qube [integer]
AXIS_NAME Names of axes [sequence of 1-6 literals]
(BAND, LINE, SAMPLE) for Standard Qube
CORE_ITEMS Core dimensions of axes [seq of 1-6 integers]
CORE_ITEM_BYTES Core element size [integer bytes: {1, 2, 4}]
CORE_ITEM_TYPE Core element type
[literal: {UNSIGNED _INTEGER, INTEGER,
REAL}]
CORE_BASE Base value of core item scaling [real]
CORE_MULTIPLIER Multiplier for core item scaling [real]

'true’ value = base + multiplier * 'stored' value
(base = 0.0 and multiplier = 1.0 for REALS)

SUFFIX_BYTES Storage allocation of suffix elements [integer:
always 4]

SUFFIX_ITEMS Suffix dimensions of axes [seq of 1-6 integers]

Appendix A. PDS Data Object Definitions

CORE_VALID_MINIMUM

CORE_NULL
CORE_LOW_INSTR_SATURATION

CORE_HIGH_INSTR_SATURATION
CORE_LOW_REPR_SATURATION

CORE_HIGH_REPR_SATURATION

A-79

Minimum valid core value -- values below this
value are reserved for 'special’ values, of which 5
are currently assigned [integer or non-decimal
integer: these values are fixed by ISIS convention
for each allowable item type and size -- see ISD for
details]

Special value indicating 'invalid' data

Special value indicating instrument saturation at the
low end

Special value indicating instrument saturation at the
high end

Special value indicating representation saturation at
the low end

Special value indicating representation saturation at
the high end

A.23.2 Required Keywords (Standard ISIS Qube) and Optional Keywords

(Generalized Qube)

CORE_NAME

CORE_UNIT
BAND_BIN_CENTER

BAND_BIN_UNIT
BAND_BIN_ORIGINAL_BAND

Name of value stored in core of qube [literal, e.g.
SPECTRAL_RADIANCE]
Unit of value stored in core of qube [literal]

Wavelengths of bands in a Standard Qube
[sequence of reals]

Unit of wavelength [literal, e.g. MICROMETER]

Original band numbers, referring to a Qube of
which the current qube is a subqube. In the original
qube, these are sequential integers.[sequence of
integers]

A.23.3 Optional Keywords (Generalized Qube and Standard ISIS Qube)

BAND_BIN_WIDTH
BAND_BIN_STANDARD_DEVIATION

BAND_BIN_DETECTOR

Width (at half height) of spectral response of bands
[sequence of reals]

Standard deviation of spectrometer values at each
band [sequence of reals]

Instrument detector number of band, where relevant
[sequence of integers]

A-80 Appendix A. PDS Data Object Definitions

BAND_BIN_GRATING_POSITION Instrument grating position of band, where relevant
[sequence of integers]

A.23.3.1 Required Keywords (for each suffix present in a 1-3 dimensional
qube):

Note: These must be prefixed by the specific AXIS_NAME. These are SAMPLE, LINE and
BAND for Standard ISIS Qubes. Only the commonly used BAND variants are shown:

BAND_SUFFIX_NAME Names of suffix items [sequence of literals]

BAND_SUFFIX_UNIT Units of suffix items [sequence of literals]

BAND_SUFFIX_ITEM BYTES Suffix item sizes [sequence of integer bytes {1, 2,
4}]

BAND_SUFFIX_ITEM_TYPE Suffix item types [sequence of literals:
{UNSIGNED_INTEGER, INTEGER, REAL, ...}]

BAND_SUFFIX_BASE Base values of suffix item scaling [sequence of
reals] (see corresponding core element)

BAND_SUFFIX_MULTIPLIER Multipliers for suffix item scaling [sequence of

reals] (see corresponding core element)
BAND_SUFFIX_VALID_MINIMUM Minimum valid suffix values

BAND_SUFFIX_NULL ...and assigned special values
BAND_SUFFIX_LOW_INSTR_SAT [sequences of integers or reals]
BAND_SUFFIX_HIGH_INSTR_SAT (see corresponding core
BAND_SUFFIX_LOW_REPR_SAT element definitions for
BAND_SUFFIX_HIGH_REPR_SAT details)

A.23.4 Example

The following label describes ISIS QUBE data from the Galileo NIMS experiment. The QUBE
contains 17 bands of NIMS fixed-map mode raw data numbers and 9 backplanes of ancillary
information. In other modes, NIMS can produce data qubes of 34, 102, 204 and 408 bands.

Appendix A. PDS Data Object Definitions A-81

<+~— 512 — Record

CCSD... 1
AHISTORY =
AQUBE
LABEL
END 24
25
HISTORY E
47
48
QUBE
9362

PDS_VERSION_ID = PDS3
/* File Structure */

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 512
FILE_RECORDS = 9158
LABEL_RECORDS = 24
FILE_STATE = CLEAN
~AHISTORY = 25

OBJECT = HISTORY
END_OBJECT = HISTORY
~QUBE = 48

OBJECT = QUBE

/* Qube structure: Standard 1SIS QUBE of NIMS Data */

AXES
AXITS_NAME

3
(SAMPLE, LINE,BAND)

/* Core description */

CORE_ITEMS = (229,291,17)
CORE_ITEM_BYTES =2
CORE_ITEM_TYPE = VAX_INTEGER
CORE_BASE = 0.0
CORE_MULTIPLIER =1.0
CORE_VALID_MINIMUM = -32752
CORE_NULL = -32768
CORE_LOW_REPR_SATURATION = -32767

CORE_LOW_INSTR_SATURATION = -32766

A-82 Appendix A. PDS Data Object Definitions

CORE_HIGH_INSTR_SATURATION
CORE_HIGH_REPR_SATURATION

-32765
-32764

CORE_NAME = RAW_DATA_NUMBER
CORE_UNIT = DIMENSIONLESS
PHOTOMETRIC_CORRECTION_TYPE = NONE

/* Suffix description */

SUFFIX_BYTES =4

SUFFIX_ITEMS = (0,0,9)

BAND_SUFFIX_NAME (LATITUDE,LONGITUDE, INCIDENCE_ANGLE,
EMISSION_ANGLE, PHASE_ANGLE, SLANT _DISTANCE, INTERCEPT_ ALTITUDE,
PHASE_ANGLE_STD_DEV, RAW_DATA_NUMBER_STD_DEV)

BAND_SUFFIX_UNIT = (DEGREE, DEGREE, DEGREE, DEGREE, DEGREE,
KILOMETER, KILOMETER, DEGREE, DIMENSIONLESS)

BAND_SUFFIX_ITEM_BYTES = (4,4,4,4,4,4,4,4,4)

BAND_SUFFIX_ITEM_TYPE = (VAX_REAL, VAX_REAL, VAX_REAL, VAX_REAL,
VAX_REAL, VAX_REAL, VAX_REAL, VAX_REAL, VAX_REAL)

BAND_SUFFIX_BASE = (0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000)

BAND_SUFFIX_MULTIPLIER = (1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000)

BAND_SUFFIX_VALID_MINIMUM = (16#FFEFFFFF#, 16#FFEFFFFF#,

16#FFEFFFFF#, 16#FFEFFFFF#, 16#FFEFFFFF#, 16#FFEFFFFF#,
16#FFEFFFFF#, 16#FFEFFFFF#, 16#FFEFFFFF#)

BAND_SUFFIX_NULL = (16#FFFFFFFF#, 16#FFFFFFFF#,
16#FFFFFFFF#, 16#FFFFFFFF#, 16#FFFFFFFF#, 16#FFFFFFFF#,
16#FFFFFFFF#, 16#FFFFFFFF#, 16#FFFFFFFF#)

BAND_SUFFIX_LOW_REPR_SAT = (16#FFFEFFFF#, 16#FFFEFFFF#,
16#FFFEFFFF#, 16#FFFEFFFF#, 16#FFFEFFFF#, 16#FFFEFFFF#,
16#FFFEFFFF#, 16#FFFEFFFF#, 16#FFFEFFFF#)

BAND_SUFFIX_LOW_INSTR_SAT = (16#FFFDFFFF#, 16#FFFDFFFF#,
16#FFFDFFFF#, 16#FFFDFFFF#, 16#FFFDFFFF#, 16#FFFDFFFF#,
16#FFFDFFFF#, 16#FFFDFFFF#, 16#FFFDFFFF#)

BAND_SUFFIX_HIGH_INSTR_SAT = (16#FFFCFFFF#, 16#FFFCFFFF#,
16#FFFCFFFF#, 16#FFFCFFFF#, 16#FFFCFFFF#, 16#FFFCFFFF#,
16#FFFCFFFF#, 16#FFFCFFFF#, 16#FFFCFFFF#)

BAND_SUFFIX_HIGH_REPR_SAT = (16#FFFBFFFF#, 16#FFFBFFFF#,
16#FFFBFFFF#, 16#FFFBFFFF#, 16#FFFBFFFF#, 16#FFFBFFFF#,
16#FFFBFFFF#, 16#FFFBFFFF#, 16#FFFBFFFF#)

BAND_SUFFIX_NOTE = "The backplanes contain 7 geometric
parameters, the standard deviation of one of them, the standard
deviation of a selected data band, and 0 to 10 "spectral index”
bands, each a user-specified function of the data bands. (See
the BAND_SUFFIX_NAME values.)

Longitude ranges from O to 360 degrees, with positive direction
specified by POSITIVE_LONGITUDE_DIRECTION in the
IMAGE_MAP_PROJECTION group.

INTERCEPT_ALTITUDE contains values for the DIFFERENCE between

the length of the normal from the center of the target body to the
line of sight AND the radius of the target body. On-target points
have zero values. Points beyond the maximum expanded radius have

Appendix A. PDS Data Object Definitions A-83

null values. This plane thus also serves as a set of "off-limb"
flags. It is meaningful only for the ORTHOGRAPHIC and
POINT_PERSPECTIVE projections; otherwise all values are zero. The
geometric standard deviation backplane contains the standard
deviation of the geometry backplane indicated in its NAME, except
that the special value 16#FFFOFFFF# replaces the standard
deviation where the corresponding core pixels have been "filled".

The data band standard deviation plane is computed for the NIMS
data band specified by STD DEV_SELECTED BAND NUMBER. This may be
either a raw data number, or spectral radiance, whichever is
indicated by CORE_NAME.

The (optional) spectral index bands were generated by the Vicar F2
program. The corresponding BAND_SUFFIX_NAME is an abbreviated
formula for the function used, where Bn should be read "NIMS data
band n*". For example: B4/B8 represents the ratio of bands 4 and

g "

STD_DEV_SELECTED_BAND_NUMBER = 9
/* Data description: general */

DATA_SET_ID = "GO-V-NIMS-4-MOSAIC-V1.0"
PRODUCT_ID XYz

SPACECRAFT_NAME GALILEO_ORBITER

MISSION_PHASE_NAME VENUS_ENCOUNTER

INSTRUMENT_NAME NEAR_INFRARED_MAPPING_SPECTROMETER

INSTRUMENT_ID = NIMS
NINSTRUMENT_DESCRIPTION = "NIMSINST.TXT"
TARGET_NAME = VENUS
START_TIME = 1990-02-10T01:49:58
STOP_TIME = 1990-02-10T02:31:52
NATIVE_START_TIME = 180425.85
NATIVE_STOP_TIME = 180467.34
OBSERVAT ION_NAME = "VPDIN1*
OBSERVATION_NOTE = "VPDIN1 / Footprint, Limbfit,
Height=50"
INCIDENCE_ANGLE = 160.48
EMISSION_ANGLE = 14.01
PHASE_ANGLE = 147.39
SUB_SOLAR_AZIMUTH = -174.74
SUB_SPACECRAFT_AZIMUTH = -0.80

MINIMUM_SLANT_DISTANCE = 85684.10
MAXTMUM_SLANT_DISTANCE 103175.00
MIN_SPACECRAFT_SOLAR_DISTANCE 1.076102e+08
MAX_SPACECRAFT_SOLAR_DISTANCE 1.076250e+08

/* Data description: instrument status */

INSTRUMENT_MODE_ ID FIXED_MAP
GAIN_MODE_ID =2

A-84

CHOPPER_MODE_ID
START_GRATING_POSITION
OFFSET_GRATING_POSITION

MEAN_FOCAL_PLANE_TEMPERATURE
MEAN_RAD_SHIELD_TEMPERATURE
MEAN_TELESCOPE_TEMPERATURE
MEAN_GRATING_TEMPERATURE
MEAN_CHOPPER_TEMPERATURE
MEAN_ELECTRONICS_TEMPERATURE

GROUP

BAND_BIN_CENTER

Appendix A. PDS Data Object Definitions

= REFERENCE
= 16
= 04

= 85.569702

= 123.636002
= 139.604996
= 142.580002
= 142.449997
= 287.049988

= BAND_BIN

(0.798777, 0.937873, 1.179840,

1.458040, 1.736630, 2.017250, 2.298800, 2.579060, 2.864540,
3.144230, 3.427810, 3.710640, 3.993880, 4.277290, 4.561400,

4.843560, 5.126080)
BAND_BIN_UNIT
BAND_BIN_ORIGINAL_BAND
BAND_BIN_GRATING_POSITION
BAND_BIN_DETECTOR

END_GROUP

GROUP

/* Projection description */

MAP_PROJECTION_TYPE
MAP_SCALE
MAP_RESOLUTION
CENTER_LATITUDE
CENTER_LONG I TUDE
LINE_PROJECTION_OFFSET
SAMPLE_PROJECTION_OFFSET
MINIMUM_LATITUDE
MAX IMUM_LATITUDE
MINIMUM_LONG ITUDE
MAX IMUM_LONG I TUDE
POSITIVE_LONGITUDE_DIRECTION
A_AXIS_RADIUS
B_AXIS_RADIUS
C_AXIS_RADIUS
REFERENCE_LATITUDE
REFERENCE_LONG I TUDE
MAP_PROJECTION_ROTATION
LINE_FIRST_PIXEL
LINE_LAST_PIXEL
SAMPLE_FIRST_PIXEL
SAMPLE_LAST_PIXEL
END_GROUP

END_OBJECT
END

MICROMETER

=@, 2, 3, 4,5,6, 7,8, 9, 10, 11,
12, 13, 14, 15, 16, 17)

= (16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16)

=@, 2, 3,4,5,6, 7,8, 9, 10, 11,
12, 13, 14, 15, 16, 17)

= BAND_BIN

= IMAGE_MAP_PROJECTION

= OBLIQUE_ORTHOGRAPHIC
45.000
2.366

12.00
350.00
149.10

= 85.10

11.71

13.62
349.62
351.72

EAST

6101 .000000
6101 .000000
6101 .000000
0.000000
0.000000
0.00

1

229

1

291

= IMAGE_MAP_PROJECTION

= QUBE

Appendix A. PDS Data Object Definitions A-85

A.24 SERIES

The SERIES object is a sub-class of the TABLE object. It is used for storing a sequence of
measurements organized in a specific way (e.g., chronologically, by radial distance, etc.). The
SERIES uses the same physical format specification as the TABLE object with additional
sampling parameter information describing the variation between elements in the series. The
sampling parameter keywords are required for the SERIES object itself, but are optional for the
COLUMN sub-objects, depending on the data organization.

The sampling parameter keywords in the SERIES object represent the variation between the
ROWS of data. For data with regularly-spaced rows, the
SAMPLING_PARAMETER_INTERVAL keyword defines the row-to-row variation. For data in
which rows are irregularly spaced, the SAMPLING_PARAMETER_INTERVAL keyword is
“N/A” and the actual sampling parameter is included as a COLUMN in the SERIES.

When the data vary regularly across items of a single column, sampling parameter keywords
appear as part of the COLUMN sub-object. Data sampled at irregular intervals described as
separate columns may also provide sampling parameter information specific to each column.

Optional MINIMUM_SAMPLING_PARAMETER and
MAXIMUM_SAMPLING_PARAMETER keywords should be added whenever possible to
indicate the range in which the data were sampled. For data sampled at a single point rather than
over a range, both the MINIMUM_SAMPLING_PARAMETER and
MAXIMUM_SAMPLING_PARAMETER are set to the specific value.

The object name “TIME_SERIES” is used when the series is chronological. In this case the label
keywords START_TIME and STOP_TIME are assumed to indicate the minimum and maximum
times in the file. If this is not the case, the MINIMUM_SAMPLING_PARAMETER and
MAXIMUM_SAMPLING_PARAMETER keywords should be used to specify the
corresponding time values for the series.

A.24.1 Required Keywords

INTERCHANGE_FORMAT

ROWS

COLUMNS

ROW_BYTES
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_UNIT
SAMPLING_PARAMETER_INTERVAL

NogakownpE

A.24.2 Optional Keywords

A-86 Appendix A. PDS Data Object Definitions

NAME

ROW_PREFIX_BYTES
ROW_SUFFIX_BYTES
MINIMUM_SAMPLING_PARAMETER
MAXIMUM_SAMPLING_PARAMETER
DERIVED_MINIMUM
DERIVED_MAXIMUM

DESCRIPTION

CoONo~wNhE

A.24.3 Required Objects

1. COLUMN

A.24.4 Optional Objects

1. CONTAINER

A.245 Example

This example illustrates the use of the SERIES object for data that vary regularly in two ways:
rows of data in the SERIES occur at 60 millisecond intervals, while the column values occur at
.03472222 millisecond intervals. Note that, as with other forms of the TABLE object, each row
in a SERIES may contain prefix or suffix bytes, indicated in this case by the
ROW_PREFIX_BYTES in the TIME_SERIES definition. The structure of the prefix is defined
by the ROW_PREFIX_TABLE object, for which the COLUMN definitions are stored in a
separate file (“ROWPRX.FMT”).

Appendix A. PDS Data Object Definitions A-87

ENGINEERING TABLE

Rec / \

1 243-byte Eng rec Spare
2 1600 8-bit waveform samples 60 ms
between
rows
e

.03472222 ms between samples

801
bytes 1-220 bytes 221-1820
ROW_PREFIX TIME_SERIES
_TABLE
PDS_VERSION_ID PDS3
RECORD_TYPE FIXED_LENGTH
RECORD_BYTES 1820
FILE_RECORDS 801

~ENGINEERING_TABLE
~ROW_PREFIX_TABLE
~TIME_SERIES

(*'C0900313.DAT", 1)
(*'C0900313.DAT", 2)
(*'C0900313.DAT", 2)

/* Observation description */

DATA_SET_ID "VG2-N-PWS-2-EDR-WFRM-60MS-V1.0"
PRODUCT_ID ""CO900313.DAT"
PRODUCT_CREATION_TIME "UNK™

SPACECRAFT_NAME VOYAGER_2

SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
EARTH_RECEIVED_TIME

""09003.13.002"
""09003.13.002"
1989-159T13:35:00.121

START_TIME 1989-157T14:16:56.979
STOP_TIME "NZA™
MISSION_PHASE_NAME NEPTUNE_ENCOUNTER
TARGET_NAME NEPTUNE

A-88

Appendix A. PDS Data Object Definitions

/* Instrument description */

INSTRUMENT_NAME = PLASMA_WAVE_RECEIVER
INSTRUMENT_ID = PWS
SECTION_ID = WFRM

/* Object descriptions */

OBJECT = ENGINEERING_TABLE
INTERCHANGE_FORMAT = BINARY
ROWS =1
COLUMNS = 106
ROW_BYTES = 243
ROW_SUFFIX_BYTES = 1577
DESCRIPTION = "This table describes the format of

the engineering record which is included as the first record in

each PWS high rate waveform file. This record contains the first
242 bytes of data extracted from the Mission and Test Imaging System
(MTIS) header record on each file of an imaging EDR tape. A 243rd
byte containing some flag fields has been added to the table for all
data collected during the Neptune encounter."

ANSTRUCTURE = "ENGTAB.FMT"
END_OBJECT = ENGINEERING_TABLE
OBJECT = ROW_PREFIX_TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 800
COLUMNS = 47
ROW_BYTES = 220
ROW_SUFFIX_BYTES = 1600
DESCRIPTION = "This table describes the format of

the engineering data associated with the collection of each row of
waveform data (1600 waveform samples)."

~STRUCTURE = "ROWPRX.FMT"
END_OBJECT = ROW_PREFIX_TABLE
OBJECT = TIME_SERIES
NAME = WAVEFORM_FRAME
INTERCHANGE_FORMAT = BINARY
ROWS = 799
COLUMNS =1
ROW_BYTES = 1600
ROW_PREFIX_BYTES = 220
SAMPL ING_PARAMETER_NAME = TIME
SAMPLING_PARAMETER_UNIT = SECOND
SAMPLING_PARAMETER_INTERVAL = .06 /* 60 MS between rows */
DESCRIPTION = "This time_series consists of up to

800 records (or rows, lines) of PWS waveform sample data. Each
record 2-801 of the file (or frame) contains 1600 waveform samples,
prefaced by 220 bytes of MTIS information. The 1600 samples are
collected in 55.56 msec followed by a 4.44 msec gap- Each 60 msec
interval constitutes a line of waveform samples. Each file contains
up to 800 lines of waveform samples for a 48 sec frame."

COLUMN
WAVEFORM_SAMPLES

OBJECT
NAME

Appendix A. PDS Data Object Definitions A-89

DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 221

BYTES = 1600

ITEMS = 1600

ITEM_BYTES =1
SAMPLING_PARAMETER_NAME = TIME
SAMPLING_PARAMETER_UNIT = SECOND

SAMPLING_PARAMETER_INTERVAL 0.00003472222 /*time between samples*/

OFFSET = -7.5

VALID_MINIMUM =0

VALID_MAXIMUM = 15

DESCRIPTION = "The 1-byte waveform samples

constitute an array of waveform measurements which are encoded into
binary values from 0 to 15 and may be re-mapped to reduce the
artificial zero-frequency component. For example, stored values can
be mapped to the following floating point values. The original 4-
bit data samples have been repackaged into 8-bit (1 byte) items
without modification for archival purposes.\n

0O =-75 1 =-6.52 =-5.5 3 =-4.5
4 =-3.5 5 =-256 =-1.5 7 =-0.5
8 = 0.5 9 = 1.510= 2.5 11 = 3.5
12 = 4.5 13 = 5.514 = 6.5 15 = 7.5
END_OBJECT = COLUMN
END_OBJECT = TIME_SERIES

END

A-90 Appendix A. PDS Data Object Definitions

A.25 SPECTRAL_QUBE

A.25.1 Introduction

Instruments classified as imaging spectrometers are increasingly being used in planetary
missions. Data from these instruments are simultaneously a set of images, at different
wavelengths, of the same target area, and a set of spectra at each point of the target area. In PDS
archives, these data may be stored as SPECTRAL_QUBEs, three-dimensional objects with two
spatial dimensions and one spectral dimension. In these three-dimensional structures, called
“qubes”, the axes have the interpretations “sample”, “line”, and “band”, respectively.

Each of the three axes in a PDS SPECTRAL_QUBE object may optionally include suffix data
that extend the length of the axis. Conceptually, this can be viewed as forming one or more
Suffix planes that are attached to the Core qube, as shown in the diagram below. Suffix planes
that extend the band dimension are called BACKPLANES. Suffix planes that extend the sample
dimension are called SIDEPLANES. Suffix planes that extend the line dimension are called
BOTTOMPLANES.

Note that these terms refer to the “logical” axes — that is, how the axes are conceptually modeled
— and are not necessarily related to the physical storage of the SPECTRAL_QUBE object. The
Suffix planes are used for storing auxiliary data that are associated with the core data. For
example, a backplane might be used for storing the latitude values for each spatial-spatial pixel.
Another backplane might be used for storing the wavelength of the deepest absorption feature
that was found in the spectrum at each spatial-spatial pixel. One or more SIDEPLANES might
be used for storing engineering data that are associated with each spatial line.

A.25.2 Logical Structure of a SPECTRAL_QUBE

As mentioned above, the logical structure of the SPECTRAL_QUBE is its conceptual model.
This is best presented visually, as is shown in the following diagrams;

Appendix A. PDS Data Object Definitions A-91

Number of Samples =5
Number of Lines = 4
Number of Bands = 3
Number of Suffix Planes = 5

Number of Suffix Backplanes = 2

Number of Sufffix Sideplanes = 2

Number of Suffix Bottomplanes = 1

[X]Represents intersection of suffix planes ("corners")

Backplanes
|I |I |I |I |I II.II Mfl
Band Axis/' || || || || "
1)
Sample|Akis
11 e]]] i _~Corner
I I I I I FBackplane / >
Line Axis | H . H - = | : | . - Sideplanes a‘-"é)
3 Core = ’
&

: ||-
Core §
| 2N I I v }ﬁ
: X

Bottomplane

Sample =4, Line =3,Band =2

For BSQ (sample, line, band) , coordinate = (4,3,2)
For BIL (sample, band, line), coordinate = (4,2,3)
For BIP (band, sample, line), coordinate = (2,4,3)

Bottomplane

Figure A.4 — Exploded Views of a SPECTRAL_QUBE Object

A.25.2.1 Pixel Coordinates

SAMPLE-=1 is the left edge of the spatial-spatial core image. LINE=1 is the top edge of the
spatial-spatial core image. BAND=1 corresponds to the spatial-spatial images at the “front” of
the diagram. Core coordinates do not carry over to the suffix regions.

A.25.3 Physical Structure of a SPECTRAL_QUBE

A.25.3.1 Storage Orders

The file in which a PDS SPECTRAL_QUBE data object is stored is physically accessed as
though it were a one-dimensional data structure. Storing the PDS SPECTRAL_QUBE pictured
above thus requires that the “logical” three-dimensional structure be mapped into the one-
dimensional physical file structure. This involves moving through the three-dimensional
structure in certain patterns to determine the linear sequence of core and suffix pixel values that
occur in the file. In PDS SPECTRAL_QUBE files, this pattern is defined by specifying which

A-92 Appendix A. PDS Data Object Definitions

axis index varies fastest in the linear sequence of pixel values in the file, which axis varies
second fastest, and which axis varies slowest.

In PDS SPECTRAL_QUBE files, the names of the three axes are always SAMPLE, LINE, and
BAND. The AXIS_NAME keyword has an array of values that list the names of the axes in the
qube. The order of the names specifies the qube storage order in the file. The first axis is the
fastest varying, and the third axis is the slowest varying. The PDS SPECTRAL_QUBE supports
the following three storage orders:

* (SAMPLE, LINE, BAND) — Band Sequential (BSQ)
* (SAMPLE, BAND, LINE) — Band Interleaved by Line (BIL)
* (BAND, SAMPLE, LINE) — Band Interleaved by Pixel (BIP)

The lengths of the Core axes are given by the CORE_ITEMS keyword, and the lengths of the
Suffix axes are given by the SUFFIX_ITEMS keyword. Both these keywords have array values,
whose order corresponds to the order of the axes given by the AXIS_NAME keyword.

In the physical file storage, Suffix pixel data (if present) are interspersed with the associated
Core pixel data. For example, in a BSQ storage order file, the physical qube storage in the file
begins with the pixels in the first (top) line of the spatial-spatial image plane at the first
wavelength band. This is followed by the sideplane pixel values that extend this line of core
pixels. Next are the core pixels for the second line, followed by the sideplane pixels for the
second line. After the last line of this first core image plane (and its associated sideplane pixels)
come the bottomplane pixels associated with the first band. This is then repeated for the second
through last bands. Finally, all the backplane data are stored after all the core data and
associated sideplane and bottomplane pixels.

If a PDS SPECTRAL_QUBE file includes suffixes on more than one axis, then the region that is
the intersection between two (or all three) of the suffix regions is called a CORNER region. The
PDS requires that space for CORNER region data be allocated in the data files. However this
space is never actually used.

A.25.3.2 Pixel Storage Sizes

Ina PDS SPECTRAL_QUBE file, core pixels can occupy one, two, or four bytes. All core
pixels within a single file must be of the same physical storage size. Suffix pixels can also
occupy one, two, or four bytes of storage in the file. All the suffix pixels within a single file
must be of the same physical storage size. Suffix pixels need not be the same size as core pixels.
Handling of different pixel data types is described in detail below.

A.25.3.3 Core Pixel Data Types

Appendix A. PDS Data Object Definitions A-93

In PDS SPECTRAL_QUBE files, core pixel values can be represented by one of several formats.
The formats available are dependent on the number of bytes used to store the values in the file.
The format is given by the CORE_ITEM_TYPE keyword and the number of bytes stored is
given by the CORE_ITEM_BYTES keyword. The following table shows the allowable formats
and the number of bytes of storage they use:

A-94 Appendix A. PDS Data Object Definitions

CORE_ITEM_BYTES CORE_ITEM_TYPE Type Conversion
Parameters
1,2,0rd UNSIGNED_INTEGER Yes
1,2,0rd MSB_UNSIGNED_INTEGER Yes
1,2,0rd LSB_UNSIGNED_INTEGER Yes
1,2,0rd INTEGER Yes
1,2,0rd MSB_INTEGER Yes
1,2,0r4d LSB_INTEGER Yes
4 IEEE_REAL No
4 VAX_REAL No
4 PC_REAL No

As the table above indicates, stored integer values can be converted to real values, representing
the actual pixel. The type conversion parameters are given by the CORE_BASE and
CORE_MULTIPLIER keywords, and the real value being represented is determined as follows:

“real_value” = CORE_BASE + (CORE_MULTIPLIER * REAL (stored_value))

For 4-byte real formats, the stored values are floating point values that directly represent the
pixel values.

A.25.3.4 Suffix Pixel Data Types

The same data types and number of storage bytes that are shown in the above table are also
available to Suffix pixels. However, Suffix pixels need not be the same size or have the same
data type as the Core pixels. Therefore, there is a SUFFIX_ITEM_BYTES keyword to indicate
the number of bytes stored for Suffix pixels and a SUFFIX_ITEM_TYPE keyword to describe
the data type of the Suffix pixels. Each suffix plane within a single file can have a different data
format. Thus, the values of these keywords are arrays. Each element of the array refersto a
spearate suffix plane.

A.25.3.5 Aligning Suffix Pixels within Allocated Bytes

The SPECTRAL_QUBE allows the number of bytes used to store data in each Suffix pixel
(SUFFIX_ITEM_BYTES) to be less than the total number of bytes allocated to each Suffix pixel
(SUFFIX_BYTES). Itis therefore necessary to describe how the stored bytes are aligned within
the allocated bytes. The BIT_MASK keyword is used for this purpose.

A.25.4 Data Dictionary Elements for the SPECTRAL_QUBE

The following section details the required and optional data dictionary elements that comprise
the SPECTRAL_QUBE.

Appendix A. PDS Data Object Definitions A-95

NOTE: Some of the following required and optional elements of the SPECTRAL_QUBE object
are 1SIS-specific. Since the ISIS system was designed before the current version of the Planetary
Science Data Dictionary, some of the element names below conflict with current PDS
nomenclature standards.

A.25.4.1 Required Objects

None.

A.25.4.2 Optional Objects

Object Name Definition

IMAGE_MAP_PROJECTION Map projection information
for the image planes.

A.25.4.3 Required Groups

Group Name Definition

BAND_BIN Group describing properties
of each “bin” along the
spectral axis.

A.25.4.4 Optional Groups

The following groups are optional, in that they describe optional Suffix axes. However, if the
named axis does appear, its descriptive keywords must be part of the appropriate group:

Group Name Definition

BAND_SUFFIX Group describing properties
of the BAND Suffix plane
(“BACKPLANE").

LINE_SUFFIX Group describing properties
of the LINE Suffix plane
(“BOTTOMPLANE").

SAMPLE_SUFFIX Group describing properties
of the SAMPLE Suffix plane
(“SIDEPLANE").

A-96 Appendix A. PDS Data Object Definitions
A.2545 Required Keywords — Outside of Groups
Keyword Name Definition Values
AXES Number of axes or 3 (SPECTRAL_QUBEs are 3-
dimensions of dimensional by definition).
SPECTRAL_QUBE
AXIS_NAME Names of axes in order of Literal values SAMPLE, LINE,
physical storage. and BAND in storage order.
One of these three storage
orders is required:
(SAMPLE, LINE, BAND)
(BAND, SAMPLE, LINE)
(SAMPLE, BAND, LINE).
CORE_ITEMS Number of pixels on each Sequence of three integers,

axis of the Core, in the same
order as in AXIS_NAME

e.g. (256, 512, 3).

CORE_ITEM_BYTES

Number of bytes in each
core pixel.

1,2, or 4.

CORE_ITEM_TYPE

Data type of core pixels.

UNSIGNED_INTEGER,
MSB_UNSIGNED_INTEGER,
LSB_UNSIGNED_INTEGER,
INTEGER, MSB_INTEGER,
LSB_INTEGER, IEEE_REAL,
VAX_REAL, PC_REAL.

SUFFIX_ITEMS

Number of side (SAMPLE)
suffix planes, bottom (LINE)
suffix planes, and back
(BAND) suffix planes, in
same order as in
AXIS_NAME.

Sequence of three integers. If
there are no suffix planes, the
value is (0, 0, 0).

If suffix planes are present:

SUFFIX_BYTES

Number of bytes allocated
for each suffix pixel.

1,2, or4. See also
SUFFIX_ITEM_BYTES.

A.25.4.6

If there are SUFFIX planes, then the following keywords are required. In order to avoid having

Required Keywords — In the *_ SUFFIX Groups

to create up to three instances of each one (e.g., BAND_SUFFIX_NAME,

LINE_SUFFIX_NAME, and SAMPLE_SUFFIX_NAME), the keywords must be nested in the

appropriate group (see section on Optional Groups):

BAND_SUFFIX group — if describing a BAND SUFFIX
LINE_SUFFIX group — if describing a LINE SUFFIX

Appendix A. PDS Data Object Definitions

SAMPLE_SUFFIX group — if describing a SAMPLE SUFFIX

Keyword Name

Definition

Values

SUFFIX_NAME

Name of suffix plane

Literal, e.g. LATITUDE

SUFFIX_ITEM_BYTES

Number of bytes used to
store data in each suffix
pixel; may be less than the
number of bytes allocated
for each pixel.

1,2, or4. See also
SUFFIX_BYTES.

SUFFIX_ITEM_TYPE

Data type of suffix pixels.

UNSIGNED_INTEGER,
MSB_UNSIGNED_INTEGER,
LSB_UNSIGNED_INTEGER,
INTEGER, MSB_INTEGER,
LSB_INTEGER, IEEE_REAL,
VAX_REAL, PC_REAL.

A.25.4.7 Required Keywords — In the BAND_BIN Group

Keyword Name

Definition

Values

BANDS

Number of bands in
SPECTRAL_QUBE (same
as given for the BAND axis
in CORE_ITEMS, repeated
here for convenience).

Integer.

BAND_BIN_CENTER

Wavelengths or frequencies
at band centers.

Sequence of real values, one
per band.

BAND_BIN_UNIT

Unit of measurement of
BAND_ BIN_CENTER and
BAND_BIN_WIDTH values.

For example, MICROMETER.

BAND_BIN_WIDTH

Widths (at half height) of
bands.

Sequence of real values, one
per band.

Note: In the case where there are so many bands that the BAND_BIN group becomes
cumbersome in the label, it may be stored in a separate file indicated in the label by a structure
pointer, e.g. 'STRUCTURE = “BAND_BIN.FMT"”.

A.25.4.8 Optional Keywords

A-97

The following keywords are optional for the PDS SPECTRAL_QUBE. Some of these keywords

must be used if the SPECTRAL_QUBE is designed for use with the Integrated Software for

Imagers and Spectrometers (ISIS). The column labeled ISIS indicates whether the keyword is

A-98

required by ISIS software. A “YES” means the keyword is required by ISIS, while a “NO”

means it is not:

Appendix A. PDS Data Object Definitions

Keyword Name Definition Values ISIS
ISIS_STRUCTURE_VERSION Version of ISIS software with 2.1 (Only current valid version YES
which the number)
SPECTRAL_QUBE's physical
structure is compatible.
CORE_NAME Name of data value stored in Literal, e.g. YES
the SPECTRAL_QUBE SPECTRAL_RADIANCE.
CORE_BASE Base value for scaling core Real. YES
pixels.
CORE_MULTIPLIER Multiplier for scaling core Real. YES
pixels.
CORE_UNIT Unit of measurement of core For example, “WATT*M**- YES
data values. 2*SR**-1*mM**-1’ (for spectral
radiance) or ‘DIMENSIONLESS’
(for raw data).
CORE_VALID_MINIMUM Minimum valid core value. Values below YES
CORE_VALID_MINIMUM have
special meaning.
CORE_NULL Special value that indicates Must be less than YES
invalid data. CORE_VALID_MINIMUM.
CORE_LOW_REPR_ Special value that indicates Must be less than YES
SATURATION representation saturation at CORE_VALID_MINIMUM.
low end.
CORE_LOW_INSTR_ Special value that indicates Must be less than YES
SATURATION instrument saturation at low CORE_VALID_MINIMUM.
end.
CORE_HIGH_REPR_ Special value that indicates Must be less than YES
SATURATION representation saturation at CORE_VALID_MINIMUM.
high end.
CORE_HIGH_INSTR_ Special value that indicates Must be less than YES
SATURATION instrument saturation at high CORE_VALID_MINIMUM.
end.
SUFFIX_BYTES Number of bytes allocated for | 1, 2, or 4. See also YES
each suffix pixel (required SUFFIX_ITEM_BYTES.
even if no suffix planes are
present).
MD5_CHECKSUM MD5 checksum of all core and | Character String. NO
suffix bytes.
LINE_DISPLAY_DIRECTION The preferred orientation of DOWN, UP, LEFT, RIGHT. NO

lines within an image for

Appendix A. PDS Data Object Definitions

A-99

viewing on a display device.
The default value is down,
where lines are viewed top to
bottom on the display.

SAMPLE_DISPLAY_DIRECTION

The preferred orientation of
samples within a line for
viewing on a display device.
The default is right, meaning
samples are viewed from left
to right on the display.

DOWN, UP, LEFT, RIGHT.

NO

In BAND_SUFFIX, LINE_SUFFIX, and SAMPL

E_SUFFIX groups:

BIT_MASK A series of binary digits A sequence of bits equal to the NO
defining the active bits in a bit-length of the allocated
value. Required when fewer storage.
bytes are used than are
allocated.

SUFFIX_BASE Base value for scaling suffix Real. NO
pixels.

SUFFIX_MULTIPLIER Multiplier for scaling suffix Real. NO
pixels.

SUFFIX_VALID_MINIMUM Minimum valid suffix value. Values below NO

SUFFIX_VALID_MINIMUM
have special meaning.

SUFFIX_NULL Special value that indicates Must be less than NO
invalid data. SUFFIX_VALID_MINIMUM.

SUFFIX_LOW_REPR_SAT Special value that indicates Must be less than NO
representation saturation at SUFFIX_VALID_MINIMUM.
low end.

SUFFIX_LOW_INSTR_SAT Special value that indicates Must be less than NO
instrument saturation at low SUFFIX_VALID_MINIMUM.
end.

SUFFIX_HIGH_REPR_SAT Special value that indicates Must be less than NO
representation saturation at SUFFIX_VALID_MINIMUM.
high end.

SUFFIX_HIGH_INSTR_SAT Special value that indicates Must be less than NO
instrument saturation at high SUFFIX_VALID_MINIMUM.
end.

SUFFIX_UNIT Unit of measurement of suffix | For example, ‘'DEGREFE’, NO
data values. ‘DIMENSIONLESS'.

In BAND_BIN group:
BAND_BIN_STANDARD _ Standard deviations of Sequence of real values, one NO

DEVIATION

spectrometer values at each
band.

per band.

A-100

Appendix A. PDS Data Object Definitions

BAND_BIN_DETECTOR Instrument detector number of | Sequence of integers, one per NO
each band, where relevant. band.
BAND_BIN_GRATING_ Instrument grating position of Sequence of integers, one per NO
POSITION each band, where relevant. band.
BAND_BIN_ORIGINAL_BAND Where relevant, band Sequence of integers, one per NO
numbers from the original band, listed in storage order for
gube of which the current the current qube.
qube is a subset. Band
numbers in the original qube
are sequential integers.
BAND_BIN_BAND_NUMBER List of band numbers Sequence of integers, one per NO
corresponding to each band band.
contained in the image. The
band number is equivalent to
the instrument band number.
BAND_BIN_FILTER_NUMBER List of filter numbers Sequence of integers, one per NO
corresponding to each band band.
contained in the image. The
filter number describes the
physical location of the band in
the detector array. Filter 1is
on the leading edge of the
array.
BAND_BIN_BASE The offset value for the stored | Sequence of real values, one NO
data of each band listed in the | per band.
BAND_BIN_BAND_NUMBER.
The BAND_BIN_BASE value
is added to the scaled data
(see
BAND_BIN_MULTIPLIER) to
reproduce the true data.
BAND_BIN_MULTIPLIER The constant value by which Sequence of real values, one NO

the stored data of each band
listed in the
BAND_BIN_BAND_ NUMBER
is multiplied to produce the
scaled data; the
BAND_BIN_BASE value is
added to the scaled data to
reproduce the true data.

per band.

Appendix A. PDS Data Object Definitions A-101

A.25.5 Example label for a PDS SPECTRAL_QUBE

PDS_VERSION_ID = PDS3

/* File ldentification and Structure */
RECORD_TYPE

RECORD_BYTES
FILE_RECORDS

FIXED_LENGTH
644
249888

/* Pointer to Data Object */

NSPECTRAL_QUBE “SAMPLE1.QUB”

/* ldentification Data Elements */
DATA SET_ID =
PRODUCT_ID =
INSTRUMENT _HOST_NAME =
INSTRUMENT _NAME =
TARGET_NAME =
START_TIME =
STOP_TIME =
SPACECRAFT_CLOCK_START_COUNT =
SPACECRAFT_CLOCK_STOP_COUNT =
PRODUCT_CREATION_TIME =

/* SPECTRAL_QUBE Object Description */

OBJECT = SPECTRAL_QUBE
AXES =3
AXTS_NAME = (SAMPLE, LINE, BAND)
ISIS_STRUCTURE_VERSION = “N/A”

MD5_CHECKSUM

/* Core Description */

= cf65a98aff4232f5ac5171406590a932

CORE_ITEMS = (320, 272, 224)

CORE_NAME = “CALIBRATED SPECTRAL RADIANCE”
CORE_ITEM_BYTES =2

CORE_ITEM_TYPE = MSB_INTEGER

CORE_BASE = 0.000000

CORE_MULTIPLIER = 1.000000

CORE_UNIT = “WATTHCM**-2*SR**_1*UM**-1"
CORE_NULL = -32768

CORE_VALID_MINIMUM = -32752
CORE_LOW_REPR_SATURATION = -32767
CORE_LOW_INSTR_SATURATION = -32766
CORE_HIGH_REPR_SATURATION = -32765
CORE_HIGH_INSTR_SATURATION = -32764

A-102

/* Suffix Descriptions */

SUFFIX_ITEMS
SUFFIX_BYTES

GROUP
SUFFIX_NAME
SUFFIX_ITEM_BYTES
SUFFIX_ITEM_TYPE
SUFFIX_BASE
SUFFIX_MULTIPLIER
SUFFIX_VALID_MINIMUM
SUFFIX_NULL
SUFFIX_LOW_REPR_SAT
SUFFIX_LOW_INSTR_SAT
SUFFIX_HIGH_REPR_SAT
SUFFIX_HIGH_INSTR_SAT

END_GROUP

GROUP
SUFFIX_NAME
SUFFIX_ITEM_BYTES
SUFFIX_ITEM_TYPE
SUFFIX_BASE
SUFFIX_MULTIPLIER
SUFFIX_VALID_MINIMUM
SUFFIX_NULL
SUFFIX_LOW_REPR_SAT
SUFFIX_LOW_INSTR_SAT
SUFFIX_HIGH_REPR_SAT
SUFFIX_HIGH_INSTR_SAT

END_GROUP

GROUP
SUFFIX_NAME
SUFFIX_UNIT
SUFFIX_ITEM_BYTES
SUFFIX_ITEM_TYPE
SUFFIX_BASE
SUFFIX_MULTIPLIER

END_GROUP

/* Band bin information */

Appendix A. PDS Data Object Definitions

@, 1, 2)
4

SAMPLE_SUFFIX
HOR1ZONTAL_DESTRIPE
4

IEEE_REAL
0.000000
1.000000
16#FFEFFFFF#
16#FFFFFFFF#
16#FFFEFFFF#
16#FFFDFFFF#
16#FFFBFFFF#
16#FFFCFFFF#
SAMPLE_SUFFIX

LINE_SUFFIX
VERTICAL_DESTRIPE
4

IEEE_REAL
0.000000
1.000000
16#FFEFFFFF#
16#FFFFFFFF#
16#FFFEFFFF#
16#FFFDFFFF#
16#FFFBFFFF#
16#FFFCFFFF#
LINE_SUFFIX

BAND_SUFFIX
(LATITUDE, LONGITUDE)
(DEGREE, DEGREE)

“4, 4

(1EEE_REAL, IEEE_REAL)
(0.000000, 0.000000)
(1.000000, 1.000000)
BAND_SUFFIX

/* For this example with 224 bands: */
/* The BAND_BIN group is stored in a separate file. */

~STRUCTURE
/* Map projection information

OBJECT
A_AXIS_RADIUS
B_AXIS_RADIUS
C_AXIS_RADIUS

“BAND_BIN.FMT™

*/

IMAGE_MAP_PROJECTION
1737 .4000000
1737 .4000000
1737 .4000000

Appendix A. PDS Data Object Definitions A-103

POSITIVE_LONGITUDE_DIRECTION = EAST

MAP_PROJECTION_TYPE = “SINUSOIDAL EQUAL AREA”
MAP_SCALE = 0.1000000
MAP_RESOLUTION = 303.2334900
EASTERNMOST_LONG I TUDE = 126.0177002
WESTERNMOST_LONG I TUDE = 120.0000000
MINIMUM_LATITUDE = 20.9867992
MAX IMUM_LATITUDE = 28.0000000
CENTER_LONG I TUDE = 135.0000000
REFERENCE_LATITUDE = 0.0000000
REFERENCE_LONG I TUDE = 0.0000000
MAP_PROJECTION_ROTATION = 0.0000000
LINE_PROJECTION_OFFSET = -8490.0381188
SAMPLE_PROJECTION_OFFSET = -4246.2684059
END_OBJECT = IMAGE_MAP_PROJECTION
END_OBJECT = SPECTRAL_QUBE

END
A.25.6 Contents of Example BAND_BIN.FMT

GROUP = BAND_BIN
BANDS = 224
BAND_BIN_UNIT = MICROMETER
BAND_BIN_CENTER = (

0.374370, 0.384460, 0.394120, 0.403770, 0.413430, 0.423090, 0.432750,
0.442420, 0.452080, 0.461750, 0.471410, 0.481080, 0.490750, 0.500410,
0.510080, 0.519760, 0.529430, 0.539100, 0.548780, 0.558450, 0.568130,
0.577810, 0.587490, 0.597170, 0.606850, 0.616530, 0.626210, 0.635900,
0.645580, 0.655270, 0.664960, 0.676310, 0.655020, 0.664890, 0.674430,
0.683970, 0.693520, 0.703070, 0.712620, 0.722170, 0.731730, 0.741290,
0.750860, 0.760420, 0.770000, 0.779570, 0.789150, 0.798720, 0.808310,
0.817890, 0.827480, 0.837070, 0.846670, 0.856270, 0.865870, 0.875470,
0.885080, 0.894690, 0.904300, 0.913920, 0.923540, 0.931740, 0.946990,
0.956410, 0.966100, 0.975560, 0.985010, 0.994470, 1.003930, 1.013390,
1.022840, 1.032300, 1.041760, 1.051210, 1.060670, 1.070130, 1.079590,
1.089040, 1.098500, 1.107950, 1.117410, 1.126870, 1.136320, 1.145780,
1.155240, 1.164690, 1.174150, 1.183600, 1.193060, 1.202520, 1.211970,
1.221430, 1.230890, 1.240340, 1.249800, 1.259770, 1.254350, 1.264320,
1.274300, 1.284270, 1.294240, 1.304210, 1.314180, 1.324150, 1.334130,
1.344100, 1.354070, 1.364040, 1.374010, 1.383980, 1.393950, 1.403920,
1.413880, 1.423850, 1.433820, 1.443790, 1.453760, 1.463720, 1.473690,
1.483660, 1.493620, 1.503590, 1.513560, 1.523520, 1.533490, 1.543450,
1.553420, 1.563380, 1.573350, 1.583310, 1.593270, 1.603240, 1.613200,
1.623160, 1.633130, 1.643090, 1.653050, 1.663010, 1.672970, 1.682930,
1.692900, 1.702860, 1.712820, 1.722780, 1.732740, 1.742700, 1.752650,
1.762610, 1.772570, 1.782530, 1.792490, 1.802450, 1.812400, 1.822360,
1.832320, 1.842270, 1.852230, 1.862190, 1.872140, .1882100, 1.880310,
1.890370, 1.900420, 1.910470, 1.920520, 1.930570, 1.940620, 1.950660,
1.960700, 1.970740, 1.980770, 1.990800, 2.000830, 2.010860, 2.020880,
2.030900, 2.040920, 2.050940, 2.060950, 2.070960, .2080970, 2.090970,
2.100980, 2.110980, 2.120970, 2.130970, 2.140960, 2.150950, 2.160940,

A-104 Appendix A. PDS Data Object Definitions

2.170920, 2.180900, 2.190880, 2.200860, 2.210830, 2.220810, 2.230770,
2.240740, 2.250700, 2.260660, 2.270620, 2.280580, 2.290530, 2.300480,
2.310430, 2.320370, 2.330320, 2.340260, 3.250190, 2.360130, 2.370060,
2.379990, 2.389920, 2.399840, 2.409760, 2.419680, 2.429600, 2.439510,
2.449420, 2.459330, 2.469240, 2.479140, 2.489040, 2.498940, 2.508830)
BAND_BIN_WIDTH = (
0.015450, 0.011530, 0.011380, 0.011230, 0.011090, 0.010960, 0.010830,
0.010710, 0.010590, 0.010490, 0.010380, 0.010290, 0.010200, 0.010120,
0.010040, 0.009970, 0.009910, 0.009850, 0.009800, 0.009760, 0.009720,
0.009690, 0.009660, 0.009640, 0.009630, 0.009630, 0.009630, 0.009640,
0.009650, 0.009670, 0.009700, 0.012670, 0.010880, 0.009560, 0.009520,
0.009500, 0.009480, 0.009470, 0.009470, 0.009470, 0.009490, 0.009510,
0.009540, 0.009580, 0.009620, 0.009680, 0.009740, 0.009810, 0.009890,
0.009970, 0.010070, 0.010170, 0.010280, 0.010390, 0.010520, 0.010650,
0.010790, 0.010940, 0.011100, 0.011260, 0.011440, 0.010160, 0.009210,
0.009790, 0.009440, 0.009440, 0.009430, 0.009420, 0.009410, 0.009410,
0.009400, 0.009400, 0.009390, 0.009390, 0.009380, 0.009380, 0.009380,
0.009380, 0.009380, 0.009380, 0.009380, 0.009380, 0.009380, 0.009380,
0.009390, 0.009390, 0.009390, 0.009400, 0.009410, 0.009410, 0.009420,
0.009430, 0.009430, 0.009440, 0.009450, 0.010090, 0.011130, 0.011140,
0.011150, 0.011150, 0.011160, 0.011160, 0.011170, 0.011170, 0.011180,
0.011180, 0.011180, 0.011190, 0.011190, 0.011190, 0.011190, 0.011190,
0.011200, 0.011200, 0.011200, 0.011200, 0.011200, 0.011190, 0.011190,
0.011190, 0.011190, 0.011190, 0.011180, 0.011180, 0.011180, 0.011170,
0.011170, 0.011160, 0.011160, 0.011150, 0.011140, 0.011140, 0.011130,
0.011120, 0.011110, 0.011110, 0.011100, 0.011090, 0.011080, 0.011070,
0.011060, 0.011050, 0.011040, 0.011030, 0.011010, 0.011000, 0.010990,
0.010980, 0.010960, 0.010950, 0.010930, 0.010920, 0.010910, 0.010890,
0.010870, 0.010860, 0.010840, 0.010820, 0.010810, 0.010790, 0.009980,
0.009970, 0.009950, 0.009940, 0.009930, 0.009910, 0.009900, 0.009890,
0.009880, 0.009860, 0.009850, 0.009840, 0.009820, 0.009810, 0.009800,
0.009790, 0.009770, 0.009760, 0.009750, 0.009730, 0.009720, 0.009710,
0.009700, 0.009680, 0.009670, 0.009660, 0.009650, 0.009630, 0.009620,
0.009610, 0.009600, 0.009580, 0.009570, 0.009560, 0.009550, 0.009530,
0.009520, 0.009510, 0.009500, 0.009490, 0.009470, 0.009460, 0.009450,
0.009440, 0.009420, 0.009410, 0.009400, 0.009390, 0.009380, 0.009360,
0.009350, 0.009340, 0.009330, 0.009320, 0.009300, 0.009290, 0.009280,
0.009270, 0.009260, 0.009250, 0.009230, 0.009220, 0.009210, 0.009200)

END_GROUP

BAND_BIN

A.25.7 Note on Using PDS SPECTRAL_QUBEs with ISIS Software

The Integrated Software for Imagers and Spectrometers (ISIS) system, developed by the U.S.
Geological Survey, uses image qubes as its principal data structure. The PDS
SPECTRAL_QUBE may be designed in such a way as to be suitable for use with ISIS. The
optional keyword ISIS_ STRUCTURE_VERSION is used to indicate that the
SPECTRAL_QUBE is to be used with ISIS. As of this writing, “2.1” is the only valid ISIS
version that can be used for this keyword:

Appendix A. PDS Data Object Definitions A-105

ISIS_STRUCTURE_VERSION =*2.1"
This indicates that the PDS SPECTRAL_QUBE can be used with ISIS software version 2.1.

For data providers interested in producing PDS SPECTRAL_QUBESs with a physical data
structure compatible with ISIS, consider the following. In order for a SPECTRAL_QUBE object
to conform to the ISIS structure, the following are specifically required in addition to all other
PDS SPECTRAL_QUBE requirements:

Record lengths must be 512, i.e., RECORD_BYTES = 512.

* Core pixels of type UNSIGNED _INTEGER must be a single byte value, i.e., if
CORE_ITEM_TYPE = UNSIGNED_INTEGER, then CORE_ITEM_BYTES = 1.

* Core pixels of type MSB_UNSIGNED_INTEGER, LSB_UNSIGNED_INTEGER,
INTEGER, MSB_INTEGER, or LSB_INTEGER must be a 2-byte value, i.e., if
CORE_ITEM_TYPE is one of these integer types, then CORE_ITEM_BYTES = 2.

» Suffix regions (if present) must allocate storage for 4.byte pixels.

Note: Conformance to these criteria ensures ISIS physical structure compatibility only. A fully
compliant ISIS label is generated within ISIS at the time of ISIS ingestion. Existing ISIS
ingestion software may need modifications to ingest specific PDS SPECTRAL_QUBEs, even
when the SPECTRAL_QUBE is physically structured for ISIS.

A.25.8 Example label for a PDS SPECTRAL_QUBE intended for use with
ISIS software

PDS_VERSION_ID = PDS3
/* File ldentification and Structure */
RECORD_TYPE

RECORD_BYTES
FILE_RECORDS

FIXED_LENGTH
512
9650

/* Pointer to Data Object */

NSPECTRAL_QUBE "SAMPLE2.QUB"

/* ldentification Data Elements */

DATA_SET_ID
PRODUCT_ID
INSTRUMENT_HOST_NAME
INSTRUMENT _NAME
TARGET_NAME
START_TIME

A-106

STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
PRODUCT_CREATION_TIME

/* SPECTRAL_QUBE Object Descript

OBJECT

AXES

AXITS_NAME
ISIS_STRUCTURE_VERSION
MD5_CHECKSUM

/* Core Description */

CORE_ITEMS

CORE_NAME

CORE_ITEM_BYTES
CORE_ITEM_TYPE

CORE_BASE

CORE_MULTIPLIER

CORE_UNIT

CORE_NULL
CORE_VALID_MINIMUM
CORE_LOW_REPR_SATURATION
CORE_LOW_INSTR_SATURATION
CORE_HIGH_REPR_SATURATION
CORE_HIGH_INSTR_SATURATION

/* Suffix Descriptions */

SUFFIX_ITEMS
SUFFIX_BYTES

GROUP
SUFFIX_NAME
SUFFIX_ITEM_BYTES
SUFFIX_ITEM_TYPE
SUFFIX_BASE
SUFFIX_MULTIPLIER
SUFFIX_VALID_MINIMUM
SUFFIX_NULL
SUFFIX_LOW_REPR_SAT
SUFFIX_LOW_INSTR_SAT
SUFFIX_HIGH_REPR_SAT
SUFFIX_HIGH_INSTR_SAT

END_GROUP

GROUP
SUFFIX_NAME
SUFFIX_ITEM_BYTES
SUFFIX_ITEM_TYPE
SUFFIX_BASE

Appendix A. PDS Data Object Definitions

ion */

SPECTRAL_QUBE

3

(SAMPLE, LINE, BAND)

ll2 _ lll
ct65a98aff4232f5ac5171406590a929

(320, 272, 3)

“CALIBRATED SPECTRAL RADIANCE"
2

MSB_ INTEGER

0.000000

1.000000
UWATTHCOM** - 2% SR** - 1*UM**-1""
-32768

-32752

-32767

-32766

-32765

-32764

@, 1, 2)
4

SAMPLE_SUFFIX
HOR1ZONTAL_DESTRIPE
4

IEEE_REAL
0.000000
1.000000
16#FFEFFFFF#
16#FFFFFFFF#
16#FFFEFFFF#
16#FFFDFFFF#
16#FFFBFFFF#
16#FFFCFFFF#
SAMPLE_SUFFIX

LINE_SUFFIX
VERTICAL_DESTRIPE
4

IEEE_REAL
0.000000

Appendix A. PDS Data Object Definitions

SUFFIX_MULTIPLIER
SUFFIX_VALID_MINIMUM =
SUFFIX_NULL =
SUFFIX_LOW_REPR_SAT =
SUFFIX_LOW_INSTR_SAT =
SUFFIX_HIGH_REPR_SAT =
SUFFIX_HIGH_INSTR_SAT =
END_GROUP =

GROUP =
SUFFIX_NAME =
SUFFIX_UNIT =
SUFFIX_ITEM_BYTES =
SUFFIX_ITEM_TYPE =
SUFFIX_BASE =
SUFFIX_MULTIPLIER =

END_GROUP =

/* Band bin information */

GROUP =
BANDS =
BAND_BIN_UNIT =
BAND_BIN_FILTER_NUMBER =
BAND_BIN_BAND_NUMBER =
BAND_BIN_CENTER =
BAND_BIN_WIDTH =
BAND_BIN_BASE =
BAND_BIN_MULTIPLIER =

END_GROUP =

1.000000
16#FFEFFFFF#
16#FFFFFFFF#
16#FFFEFFFF#
16#FFFDFFFF#
16#FFFBFFFF#
16#FFFCFFFF#
LINE_SUFFIX

BAND_SUFFIX
(LATITUDE, LONGITUDE)
(DEGREE, DEGREE)

“4, 49

(1EEE_REAL, IEEE_REAL)
(0.000000, 0.000000)
(1.000000, 1.000000)
BAND_SUFFIX

BAND_BIN
3

MICROMETER

@, 2, 3)

@, 3, 4)

(6.78, 9.35, 14.88)
(1.01, 1.20, 0.87)
(0.0, 0.0, 0.0)
(1.0, 1.0, 1.0)
BAND_BIN

/* Map projection information */

OBJECT
A_AXIS_RADIUS
B_AXIS_RADIUS
C_AXIS_RADIUS
POSITIVE_LONGITUDE_DIRECTION
MAP_PROJECTION_TYPE
MAP_SCALE
MAP_RESOLUTION
EASTERNMOST_LONG I TUDE
WESTERNMOST_LONG I TUDE
MINIMUM_LATITUDE
MAX IMUM_LATITUDE
CENTER_LONG I TUDE
REFERENCE_LATITUDE
REFERENCE_LONG I TUDE
MAP_PROJECTION_ROTATION
LINE_PROJECTION_OFFSET
SAMPLE_PROJECTION_OFFSET

END_OBJECT

END_OBJECT

IMAGE_MAP_PROJECTION
1737 .4000000

1737 .4000000

1737 .4000000

EAST

"SINUSOIDAL EQUAL AREA™
0.1000000
303.2334900
126.0177002
120.0000000
20.9867992
28.0000000
135.0000000
0.0000000
0.0000000
0.0000000
-8490.0381188
-4246.2684059
IMAGE_MAP_PROJECTION

SPECTRAL_QUBE

A-107

A-108 Appendix A. PDS Data Object Definitions

END

Appendix A. PDS Data Object Definitions A-109

A.26 SPECTRUM

The SPECTRUM object is a form of TABLE used for storing spectral measurements. The
SPECTRUM object is assumed to have a number of measurements of the observation target
taken in different spectral bands. The SPECTRUM object uses the same physical format
specification as the TABLE object, but includes sampling parameter definitions which indicate
the spectral region measured in successive COLUMNSs or ROWSs. The common sampling
parameters for SPECTRUM objects are wavelength, frequency, or velocity.

A regularly sampled SPECTRUM can be stored either horizontally as a one-row table with a
single column containing n samples (indicated in the COLUMN definition by “ITEMS = n"), or
vertically as a one-column table with n rows where each row contains a sample of the spectrum.
The vertical format allows additional columns to be defined for related parameters for each
sample value (e.g., error bars). These related columns may also be described in a separate
PREFIX or SUFFIX table.

In the horizontal format, the sampling parameter specifications are included in the COLUMN
definition. For a vertically defined SPECTRUM, the sampling parameter information is provided
in the SPECTRUM object, since it is describing the spectral variation between the rows of the
data. An irregularly sampled SPECTRUM must be stored horizontally, with each specific
spectral range identified as a separate column.

A.26.1 Required Keywords

INTERCHANGE_FORMAT
ROWS

COLUMNS

ROW_BYTES

Awnh e

A.26.2 Optional Keywords

NAME
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_UNIT
SAMPLING_PARAMETER_INTERVAL
ROW_PREFIX_BYTES
ROW_SUFFIX_BYTES
MINIMUM_SAMPLING_PARAMETER
MAXIMUM_SAMPLING_PARAMETER
. DERIVED_MINIMUM

10. DERIVED_MAXIMUM

11. DESCRIPTION

©CoNoG~wWNE

A-110 Appendix A. PDS Data Object Definitions

A.26.3 Required Objects

1. COLUMN

A.26.4 Optional Objects

1. CONTAINER

A.26.5 Example

This example illustrates a SPECTRUM data object stored in a vertical format. The data are
regularly sampled at intervals of 99.09618 meters/second and data samples are stored in
successive ROWS.

row <2 bytes——
1 -258111.21 M/S
2 -254599.47 M/S
256

PDS_VERSION_ID PDS3
RECORD_TYPE FIXED_LENGTH
RECORD_BYTES 2
FILE_RECORDS 256

PRODUCT_ID
DATA_SET_ID
TARGET_NAME
INSTRUMENT_HOST_NAME
INSTRUMENT _NAME
OBSERVATION_ID
START_TIME

STOP_TIME
PRODUCT_CREATION_TIME

""RSSLOO7 .DAT™
"IHW-C-RSSL-3-EDR-HALLEY-V1.0"
"HALLEY"

"IHW RADIO STUDIES NETWORK"
"RADIO SPECTRAL LINE DATA™
621270
1985-11-10T00:43:12.000
1985-11-10T00:43:12.000

"UNK™

/* Record Pointer to Major Object */
ATOTAL_INTENSITY_SPECTRUM = "RSSLO0O07 .DAT"

/* Object Description */

OBJECT
INTERCHANGE_FORMAT

SPECTRUM
BINARY

Appendix A. PDS Data Object Definitions

ROWS

ROW_BYTES

COLUMNS
SAMPLING_PARAMETER_NAME
MINIMUM_SAMPLING_PARAMETER
SAMPLING_PARAMETER_INTERVAL
SAMPLING_PARAMETER_UNIT

DESCRIPTION
OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
SCALING_FACTOR
OFFSET

DERIVED_MINIMUM
DERIVED_MAXIMUM
END_OBJECT
END_OBJECT

END

A-111

256

2

1

"WVELO_COM™

-1.268431E+04

9.909618E+01

""METERS/SECOND"

"Radio Studies; Spectral Line intensity
spectrum. Spectrum is organized as 1
column with 256 rows. Each row
contains a spectral value for the
velocity derived from the sampling
parameter information associated with
each row."

COLUMN
FLUX_DENSITY
MSB_INTEGER
1

2
7.251200E-04
0.000000E+01
2.380000E+01
3.490000E+01
COLUMN
SPECTRUM

A-112 Appendix A. PDS Data Object Definitions

A.27 SPICE KERNEL

The SPICE_KERNEL object describes a single kernel file in a collection of SPICE kernels.
SPICE kernels provide ancillary data needed to support the planning and subsequent analysis of
space science observations. The SPICE system includes the software and documentation required
to read the SPICE Kernels and use the data contained therein to help plan observations or
interpret space science data. This software and associated documentation are collectively called
the NAIF Toolkit.

Kernel files are the major components of the SPICE system. Each type of kernel, indicated by
the KERNEL_TYPE keyword, corresponds to one of these components and has a specific
abbreviation. The major kernel types, their abbreviations, and the associated file extension(s) are
listed in the following table. (For a complete list of file extensions, see Section 10.2.3.)

KERNEL_TYPE Abbreviation File Contents
Extension
EPHEMERIS SPK .BSP - binary Spacecraft, planet, satellite, or other target

.XSP — transfer body epehemeris data to provide position and
velocity of a target as a function of time

TARGET_CONSTANTS PCK .TPC Cartographic constants for a planet, satellite,
comet, or asteroid
INSTRUMENT IK Tl Collected science instrument information,

including dpecification of the mounting
alignment, internal timing, and other
information needed to interpret measurements
made with a particular instrument

POINTING CK .BC - binary Pointing data, e.g., the inertially referenced
XC - transfer attitude for a spacecraft structure upon which
instruments are mounted, given as a function
of time
EVENTS EK XES Event information, e.g., spacecraft and

instrument commands, ground data system
event logs, and experimenter’s notebook
comments

LEAPSECONDS LSK TLS An account of the leapseconds needed to
correlate civil time (UTC) to ephemeris time
(TDB), the measure of time used in the SP

kernel files
SPACECRAFT_CLOCK- SCLK .TSC Data needed to correlate a spacecraft clock to
_COEFFICIENTS ephemeris time

Data products referencing a particular SPICE kernel do so by including the
SOURCE_PRODUCT _ID keyword in their label with a value corresponding to that of the
PRODUCT _ID keyword in the SPICE_KERNEL label. (The PRODUCT _ID keyword is unique
to a data product.)

Appendix A. PDS Data Object Definitions

A.27.1 Required Keywords

1. DESCRIPTION
2. INTERCHANGE_FORMAT
3. KERNEL_TYPE

A.27.2 Optional Keywords

Any

A.27.3 Required Objects

None

A.27.4 Optional Objects

None

A.275 Example

A-113

Following is an example of a SPICE CK (pointing) kernel label. This label would be attached to
the CK file, and thus would be immediately followed by the internal CK file header. (This
example was fabricated for use here based on existing examples.)

PDS_VERSION_ID
RECORD_TYPE
MISSTON_NAME
SPACECRAFT_NAME
DATA_SET_ID
FILE_NAME

PRODUCT_ID
PRODUCT_CREATION_TIME
PRODUCER_ID
MISSION_PHASE_TYPE
PRODUCT_VERSION_TYPE
START_TIME

STOP_TIME

SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

TARGET_NAME
INSTRUMENT _NAME
INSTRUMENT_ID
SOURCE_PRODUCT_ID

PDS3

STREAM
MARS_OBSERVER
MARS_OBSERVER

""NAFOOOOD.TC"
""NAFOOOOD-CK""
1992-04-14T12:00:00
“"NAIF"

"ORBIT™

"TEST™
1994-01-06T00:00:00
1994-02-04T23:55:00
"'3/76681108.213"
"4/79373491.118"
MARS

MO

{"'NAFO000C .BSP"", ""NAFOO00C.TLS", ""NAFOOOOC.TSC"}

NOTE

SOFTWARE TESTING ONLY.™

OBJECT

= "BASED ON EPHEMERIS

= SPICE_KERNEL

""MO-M-SPI1CE-6-CK-V1.0"

""MARS OBSERVER SPACECRAFT"

IN NAFOOOOC.BSP.

FOR

A-114 Appendix A. PDS Data Object Definitions

INTERCHANGE_FORMAT

KERNEL_TYPE POINTING

DESCRIPTION "This is a SPICE kernel file, designed
to be accessed using NAIF Toolkit software. Contact your flight
project representative or the NAIF node of the Planetary Data System
if you wish to obtain a copy of the NAIF Toolkit. The Toolkit
consists of portable FORTRAN 77 code and extensive user
documentation.™

END_OBJECT = SPICE_KERNEL
END

ASCI1

Appendix A. PDS Data Object Definitions A-115

A.28 SPREADSHEET

The SPREADSHEET is a natural storage format for data products in which the data rows are
sparsely populated or field values have variable lengths.

A SPREADSHEET definition describes a collection of logically uniform rows containing ASCII
values stored in variable-width fields separated by field delimiters. Each row within a
SPREADSHEET has the same number of fields, in the same field order; and each field contains
the same logical content. By definition, the SPREADSHEET object is used only to describe
ASCII data objects. Therefore, it is not necessary to include the INTERCHANGE_FORMAT
keyword within the object keyword list. The rows and fields of the SPREADSHEET object
provide a natural correspondence to the rows and columns of fixed-width tables. Each field is
defined by a variable width FIELD object (see section A.14); the value of the FIELDS keyword
is the total number of FIELD objects defined in the SPREADSHEET. All SPREADSHEET
objects have variable-length records and have rows delimited by carriage-return line-feed
(<CR><LF>) ASCII line termination characters.

A.28.1 Required Keywords
4. ROWS

5. ROW_BYTES

6

7

FIELDS
FIELD_DELIMITER

A.28.2 Optional Keywords

10. NAME
11. DESCRIPTION
12. PSDD

A.28.3 Required Objects

1. FIELD

A.28.4 Optional Objects

None

Notes:

A-116 Appendix A. PDS Data Object Definitions

1. The RECORD_BYTES keyword in the implied file object definition of the PDS label
containing a SPREADSHEET object definition should specify the actual number of bytes
in the longest record within the file being described. If the file contains several
components, this longest record may not necessarily be in the SPREADSHEET.

2. The ROW_BYTES keyword within the SPREADSHEET object definition is used to
specify the maximum number of bytes that could be contained in a row in the
SPREADSHEET object (i.e. the sum of all the FIELD object BYTES values, plus the
number of delimiters and quotation marks, plus the 2 bytes for the <CR><LF> line
termination).

A.28.5 Required SPREADSHEET Formats

The SPREADSHEET is an ASCII data object. Its records contain fixed numbers of variable-
length fields and are delimited by carriage-return line-feed pairs. The FIELD delimiter can be
COMMA, SEMICOLON, TAB, or VERTICAL_BAR,; subfields (if any) are delimited by the
same character.

The ASCII format makes the SPREADSHEET readable by both machines and humans. The
relative loss in human readability (compared to the TABLE object) is mitigated by more efficient
storage, especially for sparsely populated fields.

Several keywords take on special meanings in the SPREADSHEET context. BYTES (and
ITEM_BYTES, if used) gives the maximum allowable number of bytes in the FIELD (ITEM).
ROW_BYTES is the maximum allowable number of bytes in the row, including delimiters,
quotation marks, and the carriage-return line-feed pair. RECORD_TYPE within the implied
parent file object is always STREAM. RECORD_BYTES within the implied file is the actual
number of bytes in the longest record, including the carriage-return line-feed pair. If the file
contains more than the SPREADSHEET, however, the longest record may not be a
SPREADSHEET record.

A.28.6 Recommended SPREADSHEET Formats

The recommended format for SPREADSHEET objects is a comma-separated value format in
which string fields are enclosed in double quotes. This format can be imported directly into
many commercial data management systems and spreadsheet applications.

The recommended file name extension for files containing SPREADSHEET objects is CSV

(e.g., MYDATA.CSV), but the CSV extension does not necessarily imply that the field delimiter
is COMMA.

Example - Recommended SPREADSHEET

Appendix A. PDS Data Object Definitions

A-117

The following example shows a sparse matrix described as a SPREADSHEET object. The
longest record is 85-bytes. Note that delimiters (double quotes and commas) and line
terminators (KCR><LF>) are included in the byte count for each record (RECORD_BYTES) and
row (ROW_BYTES).

Contents of file "MYDATA.CSV":

2004-03-04T00:00:00.012,0.45, "MODE 1",0,,,1,,,-1,12,5,1,2,1,1,0,1,3,1,0<CR><LF>
2004-03-04T00:00:01.012,0.45, "MODE 1",1,,,1,,,6,9,15,8,7,2,1,1,0,0,1,0<CR><LF>
2004-03-04T00:00:02.012,0.45,"MODE 1",2,,,5,,,25,15,10,4,2,1,1,1,1,0,1, 1<CR><LF>
2004-03-04T00:00:03.012,0.45, "MODE 1",1,,,1,,,2,4 8,3,1,1,1,1,1,1,0,0<CR><LF>
2004-03-04T00:00:04.012,0.45, "MODE 5",1,1,3,1,1,2,3,1,1,2,2,1,4,3,1,1,4,1,1,0<CR><LF>
2004-03-04T00:00:05.012,0.45, "MODE 5" 1 5 4,2,1,1,1,1,2,0,0,1,0,1,1,0,0,0,0,0<CR><LF>
2004-03-04T00:00:06.012,0.45, "MODE 5",1,6,3,5,4,3,1,,0,1,1,1,1,2,1,1,1,3,1,0<CR><LF>
2004-03-04T00:00:07.012,0.45, "MODE 6" ,,,,3,,,5,,1,,1,3,,2 3,,,,<CR><LF>
2004-03-04T00:00:08.012,0.45, "MODE 6",,,,,1,,,2,,1,,1,4,,1,2,,, ,<CR><LF>
2004-03-04T00:00:09.012,0.45, "MODE 6",,,,1,,,,,1,1,1,,,1,,,,,<CR><LF>
2004-03-04T00:00:10.017,4.00, "MODE 11",,,,,8,15,14,21,24,18,15,10,8,9,11,6,-1,9,8,6<CR><LF>
2004-03-04T00:00:15.017,4.00, "MODE 11",,,,,8,12,17,35,20,12,5,1,2,1,1,8,11,7,8, 6<CR><LF>

2004-03-04T00:

00:20.017,4.00

, "MODE

11",,,,,4,8,12,32,24,12,15,4,3,1,1,6,7,3,5,2<CR><LF>

2004-03-04T00:00:25.017,4.00, "MODE 13",,,,,1,5,12,12,14,12,5,1,1,7,2,4,,, ,<CR><LF>
2004-03-04T00:00:30.017,4.00, "MODE 13",,,,,1,5,5,14,16,10,8,3,1,5,3,2,,,,<CR><LF>
2004-03-04T00:00:35.017,4.00, "MODE 13",,,,,1,2,3,2,19,43,21,17,4,8,3,1,,, ,<CR><LF>
2004-03-04T00:00:40.017,4.00, "MODE 13",,,,,1,2,1,2,4,12,9,3,1,1,1,1,,,,<CR><LF>
2004-03-04T00:00:45.017,4.00, "MODE 13",,,,,1,3,1,-1,9,16,7,1,1,1,1,2,,, ,<CR><LF>
2004-03-04T00:00:50.017,4.00, "MODE 13",,,,,1,2,1,2,4,12,5,1,1,1,1,1,,,,<CR><LF>
2004-03-04T00:00:55.017,4.00, "MODE 13",,,,,1,2,1,2,4,10,5,1,1,1,1,1,,,,<CR><LF>

MYDATA.CSV is an example data file described by a SPREADSHEET object
definition within a PDS label. The longest record in this file is 85 bytes
(record 11) and this value is assigned to the RECORD_BYTES keyword. However,
records described by this SPREADSHEET definition could be as long as 163
bytes (see example label below). The value assigned to the ROW_BYTES keyword
(163) is the maximum possible row size (bytes) described by the SPREADSHEET
object definition.

Bytes Field

23 - Time (23)
8 - delimiter + duration (7)
10 - delimiter + quotes(2) + mode string (7)
60 - delimiter + electrons (59)
60 - delimiter + ions (59)

+ 2 - CR + LF

= 163 = ROW_BYTES

Contents of file "MYDATA.LBL":

PDS_VERSION_ID = PDS3

RECORD_TYPE = STREAM

RECORD_BYTES = 85 /* Largest actual record in the file */
FILE_RECORDS = 20

" SPREADSHEET = "MYDATA.CSV"

DATA SET ID
SPACECRAFT NAME
INSTRUMENT NAME
TARGET NAME

PRODUCT ID =

"CO-S-INST-2-DUMMY-DATA-V1.0"
"CASSINI ORBITER"

"MY INSTRUMENT"

{"SATURN", "SOLAR WIND"}

"MYDATA.CSV"

A-118

PRODUCT CREATION TIME
START TIME

STOP_TIME

DESCRIPTION

OBJECT
ROWS
ROW_BYTES
FIELDS
FIELD_ DELIMITER

OBJECT
NAME
DATA_TYPE
FIELD_NUMBER
BYTES
DESCRIPTION
END_OBJECT

OBJECT
NAME
FIELD_NUMBER
BYTES
FORMAT
DATA_TYPE
UNITS
DESCRIPTION
(seconds)."
END_OBJECT

OBJECT

NAME
FIELD_ NUMBER
BYTES

quotes*/
FORMAT
DATA_TYPE
DESCRIPTION

properties.
END_OBJECT

OBJECT
NAME
FIELD_NUMBER
BYTES
ITEMS
ITEM_BYTES
FORMAT
DATA_TYPE
UNITS
MISSING_CONSTANT
DESCRIPTION

Appendix A. PDS Data Object Definitions

= 2004-08-04T11:15:00

2004-03-04T00:00:00.012
2004-03-04T00:00:55.017

"This file contains an example

sparse matrix data object (SPREADSHEET)."

SPREADSHEET

20

163 /* Size of longest possible row*/
5

"COMMA"

FIELD

"TIME"

TIME

1

23

"Spacecraft event time (UT) for this data record."
FIELD

FIELD

"DURATION"

2

7

"F7.2"

"ASCII_ REAL"

"SECOND"

"Time interval over which counting was performed

FIELD

FIELD

"MODE"

3

7 /* doesn’t count bytes occupied by double

na7n
"CHARACTER"

"Scan mode name. See the instrument description for
a complete list of scan mode names and

FIELD

FIELD

"ELECTRON COUNTS"

4

59 /* Maximum bytes including item delimiters */
10

5 /* Maximum item bytes */

"15 "

"ASCII_ INTEGER"

"COUNTS"

-1

"This field contains electron counts from channels
E1-E10. Items without values indicate channels not
counted during the interval. Values of zero denote
counted channels in which no electrons were
detected. Values of -1 denote corrupted data,

Appendix A. PDS Data Object Definitions

END_OBJECT

OBJECT
NAME
FIELD_ NUMBER
BYTES
ITEMS
ITEM BYTES
FORMAT
DATA_TYPE
UNITS
MISSING_CONSTANT
DESCRIPTION

END_OBJECT
END_OBJECT
END

excluded from the data file (counted,
undefined)."
FIELD

FIELD
"ION COUNTS"

5 /* 5th FIELD object in label */
59

10

5

nrgn

"ASCII INTEGER"

"COUNTS"

-1

A-119

but value

"This field contains ion counts from channels D1-
D10. Items without values indicate channels not
counted during the interval. Values of zero
denote counted channels in which no ions were
detected. Values of -1 denote corrupted data,

excluded from the data file (counted,
undefined)."

FIELD

SPREADSHEET

but value

A-120 Appendix A. PDS Data Object Definitions

A.29 TABLE

TABLES are a natural storage format for collections of data from many instruments. They are
often the most effective way of storing much of the meta-data used to identify and describe
instrument observations.

The TABLE object is a uniform collection of rows containing ASCII or binary values stored in
columns. The INTERCHANGE_FORMAT keyword is used to distinguish between TABLEs
containing only ASCII columns and those containing binary data. The rows and columns of the
TABLE object provide a natural correspondence to the records and fields often defined in
interface specifications for existing data products. Each field is defined as a fixed-width
COLUMN obiject; the value of the COLUMNS keyword is the total number of COLUMN
objects defined in the label. All TABLE objects must have fixed-width records.

Many variations on the basic TABLE object are possible with the addition of optional keywords
and/or objects. While it is possible to create very complex row structures, these are often not the
best choices for archival data products. Recommended ASCII and binary table formats are
described and illustrated below.

A.29.1 Keywords
A.29.1.1 Required Keywords

1. INTERCHANGE_FORMAT
2. ROWS

3. COLUMNS

4. ROW_BYTES

A.29.1.2 Optional Keywords

NAME

DESCRIPTION
ROW_PREFIX_BYTES
ROW_SUFFIX_BYTES
TABLE_STORAGE_TYPE

SAE B

A.29.1.3 Required Objects

1. COLUMN

A.29.1.4 Optional Objects

Appendix A. PDS Data Object Definitions A-121

1. CONTAINER

A.29.2 ASCII vs. BINARY formats

ASCII tables provide the most portable format for access across a wide variety of computer
platforms. They are also easily imported into a number of database management systems and
spreadsheet applications. For these reasons, the PDS recommends the use of ASCII table formats
whenever possible for archive products.

ASCII formats are generally less efficient for storing large quantities of numeric data. In
addition, raw or minimally processed data products and many pre-existing data products
undergoing restoration are only available in binary formats.Where conversion to an ASCI|I
format is not cost effective or is otherwise undesirable, BINARY table formats may be used.

A.29.3 Recommended ASCII TABLE Format

The recommended format for ASCI1 TABLE files is a comma-separated value format in which
the string fields are enclosed in double quotes. ASCII tables must have fixed-length records and
should use carriage-return/linefeed (<CR><LF>) delimiters. Numeric fields are right-justified in
the allotted space and character fields are left-justified and blank padded on the right. This table
format can be imported directly into many commercial data management systems.

The field delimiters and quotation marks must occur between the defined COLUMNSs. That is,
the START_BYTE for a string column should not point to the opening quotation mark, but the
first character in the field itself. Similarly, the BYTES values for the columns should not include
the commas at the end of the values. For example, a twelve character COLUMN called
SPACECRAFT_NAME would be represented in the table as "VOYAGER 1 " rather than "
VOYAGER 1" or "VOYAGER 1".

The following label fragment illustrates the general characteristics of the recommended ASCII
TABLE format for a table with 1000-byte records:

FIXED_LENGTH < 1000 » Record
1000 Row 1 [CR|LF 1
Row?2 |CR|LF 2

RECORD_TYPE
RECORD_BYTES

OBJECT

= TABLE

INTERCHANGE_FORMAT = ASCII

ROW_BYTES = 1000
END_OBJECT = TABLE Row n CRILF n

A-122 Appendix A. PDS Data Object Definitions

A.29.3.1 Example - Recommended ASCII TABLE

The following example is an ASCII index table with 71-byte records. Note that for ASCII
tables, the delimiters (double quotes and commas) and line terminators (<KCR><LF>) are
included in the byte count for each record (RECORD_BYTES). In this example, the delimiters
are also included in the byte count for each row (ROW_BYTES). The <CR><LF> characters
have been placed in columns 70 and 71.

Note: The example following is an INDEX_TABLE, a specific type of (ASCII)
TABLE object. Two rows of numbers indicating the byte count (read
vertically) have been added above the data file contents to facilitate
comparison with the label. These rows would not appear in the actual data
file.

Contents of file “INDEX.TAB”:

000000000111111111122222222223333333333444444444455555555556666666666 7 7

123456789012345678901234567890123456789012345678901234567890123456789 0 1

“"F-MIDR ","F-MIDR.40N286;1 *,"C", 42, 37,289,282,"F40N286/FRAME.LBL "<CR><LF>
"“"F-MIDR ","F-MIDR.20N280;1 *,"C", 22, 17,283,277,"F20N280/FRAME.LBL "<CR><LF>
“"F-MIDR ","F-MIDR.20N286;1 *,"C", 22, 17,289,283, F20N286/FRAME.LBL "<CR><LF>
“"F-MIDR ","F-MIDR.OON279;1 *","R", 2, -2,281,275,"FOON279/FRAME.LBL "<CR><LF>
“"F-MIDR ","F-MIDR.O5N290;1 *,"C", 7, 2,292,286, FO5N290/FRAME.LBL "<CR><LF>
“"F-MIDR ","F-MIDR.05S279;1 *,"R", -2, -7,281,275,"F05S279/FRAME.LBL "<CR><LF>
“"F-MIDR ","F-MIDR.10S284;1 *,"C", -7,-12,287,281,"F10S284/FRAME.LBL "<CR><LF>
“"F-MIDR ","F-MIDR.10S290;1 *,"R", -7,-12,292,286,"F10S290/FRAME.LBL "<CR><LF>
"“"F-MIDR ","F-MIDR.15S283;1 *,"R",-12,-17,286,279,"F155283/FRAME.LBL "<CR><LF>
“"F-MIDR ","F-MIDR.15S289;1 *,"R",-12,-17,291,285,"F155S289/FRAME.LBL "<CR><LF>

Contents of file “INDEX.LBL”:

PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =71
FILE_RECORDS = 10
~NINDEX_TABLE = "INDEX.TAB"

PRODUCT_CREATION_TIME 1999-02-23t11:15:07

MISSION_PHASE_NAME PRIMARY_MISSION

NOTE "This table lists all MIDRs on this
volume. It also includes the latitude and longitude range for each

MIDR and the directory in which it is found."

DATA_SET_ID = "MGN-V-RDRS-5-MIDR-FULL-RES-V1.0"
VOLUME_ID = MG_7777

PRODUCT_ID = "FMIDR._XYZ"

SPACECRAFT_NAME = MAGELLAN

INSTRUMENT _NAME = "RADAR SYSTEM"

TARGET_NAME = VENUS

Appendix A. PDS Data Object Definitions

OBJECT

INTERCHANGE_FORMAT
ROWS

COLUMNS

ROW_BYTES
INDEX_TYPE

OBJECT
NAME
DESCRIPTION

DATA_TYPE

START_BYTE

BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_TYPE

START_BYTE

BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_TYPE

START_BYTE

BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_TYPE
UNIT
START_BYTE
BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_TYPE
UNIT
START_BYTE

A-123

INDEX_TABLE
ASCI1

10

8

71

SINGLE

COLUMN

PRODUCT_TYPE

"Magellan DMAT type code. Possible
values are F-MIDR, C1-MIDR, C2-MIDR,
C3-MIDR, and P-MIDR."

CHARACTER

2

7

COLUMN

COLUMN

PRODUCT_ID

"Magellan DMAT name of product.
Example: F-MIDR.20N334;1"

CHARACTER

12

16

COLUMN

COLUMN

SEAM_CORRECTION_TYPE

"A value of C indicates that cross-
track seam correction has been applied.
A value of R indicates that the
correction has not been applied."
CHARACTER

31

1

COLUMN

COLUMN

MAXIMUM_LATITUDE

“"Northernmost frame latitude rounded to
the nearest degree."

INTEGER

DEGREE

34

3

COLUMN

COLUMN

MINIMUM_LATITUDE

"Southernmost frame latitude rounded to
the nearest degree."

INTEGER

DEGREE

38

A-124

BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_TYPE
UNIT
START_BYTE
BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_TYPE
UNIT
START_BYTE
BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_TYPE

START_BYTE

BYTES
END_OBJECT

END_OBJECT
END

Appendix A. PDS Data Object Definitions

3
COLUMN

COLUMN

EASTERNMOST_LONGITUDE

"Easternmost frame longitude rounded to
the nearest degree."

INTEGER

DEGREE

42

3

COLUMN

COLUMN

WESTERNMOST_LONGITUDE

"Westernmost frame longitude rounded to
the nearest degree."

INTEGER

DEGREE

46

3

COLUMN

COLUMN

FILE_SPECIFICATION_NAME

"Path and file name of frame table
relative to CD-ROM root directory."
CHARACTER

51

18

COLUMN

INDEX_TABLE

A.29.4 Recommended BINARY TABLE Format

In the case of binary data, PDS recommends a format in which one data record corresponds to
one row in the TABLE. Unused or spare bytes embedded within the record should be defined as
COLUMNSs (one for each chunk of contiguous unused bytes) named “SPARE”, both for
completeness and to facilitate automated validation of the TABLE structure. For reasons of
portability, BIT_COLUMN objects within COLUMNSs are discouraged. Whenever possible, bit
fields should be unpacked into more portable, byte-oriented COLUMNS.

Appendix A. PDS Data Object Definitions A-125

The following label fragment illustrates the general characteristics of the recommended binary
TABLE format for a table with 1000-byte records:
<—1000— Record

RECORD_TYPE = FIXED_LENGTH Row 1 1
RECORD_BYTES = 1000 Row 2 5
OBJECT = TABLE

INTERCHANGE_FORMAT = BINARY

ROW_BYTES = 1000
END_OBJECT = TABLE Row n n

A.29.4.1 Example - Recommended Binary TABLE

Following is an example of a binary table containing three columns of data. The first two
columns provide TIME information in both the PDS standard UTC format and an alternate
format. The third column provides uncalibrated instrument measurements for the given time.
The binary data reside in the file “T890825.DAT”. The detached label file, “T890825.LBL”
providing the complete description, is presented below.

Note: The label makes use of a format file, pointed to by the "STRUCTURE
keyword in the TABLE definition, to include a set of column definitions held
in an external file (“CRSDATA.FMT?). The contents of this structure file are
also provided below.

This table could also be represented as a TIME_SERIES by the addition of
sampling parameter keywords to describe the row-to-row variation in the
table.

Contents of label file “T890825.DAT™:

byte 1 89 3233 36 Record
Row 1 1

C TIME PDS TIME D1
RATE

Row 350 350

Contents of label file “T890825.LBL™:

A-126 Appendix A. PDS Data Object Definitions

PDS_VERSION_ID = PDS3

/* File Characteristic Keywords */

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 36

FILE_RECORDS 350

HARDWARE_MODEL _ID "SUN SPARC STATION"
OPERATING_SYSTEM_ID = "SUN OS 4.1.1"

/* Data Object Pointers */
~TABLE = ""T890825.DAT"

/* ldentification Keywords */
DATA_SET_ID = "VG2-N-CRS-4-SUMM-D1-96SEC-V1.0"

SPACECRAFT_NAME = "WOYAGER 2"
INSTRUMENT_NAME = "COSMIC RAY SYSTEM"
TARGET_NAME = NEPTUNE

START_TIME = 1989-08-25T00:00:00.000
STOP_TIME = 1989-08-25T09:58:02.000
MISSION_PHASE_NAME = "NEPTUNE ENCOUNTER™
PRODUCT_ID = "'"T890825.DAT"
PRODUCT_CREATION_TIME = "UNK"
SPACECRAFT_CLOCK_START_COUNT = "UNK"
SPACECRAFT_CLOCK_STOP_COUNT = "UNK"

/* Data Object Descriptions */

OBJECT = TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 350
COLUMNS =3
ROW_BYTES = 36
ASTRUCTURE = "CRSDATA.FMT"
END_OBJECT = TABLE
END

Contents of file “CRSDATA.FMT”:

OBJECT = COLUMN
NAME = "C TIME"
UNIT = ""SECOND"
DATA TYPE = REAL
START_BYTE =1
BYTES =8
MISSING = 1.0E+32
DESCRIPTION = "Time column. This field contains time

in seconds after Jan 01, 1966 but is
displayed in the default time format
selected by the user."

END_OBJECT = COLUMN

OBJECT = COLUMN

Appendix A. PDS Data Object Definitions A-127

NAME = "PDS TIME"

UNIT = "TIME"

DATA TYPE = TIME

START_BYTE =9

BYTES = 24

DESCRIPTION = "Date/Time string of the form yyyy-mm-

ddThh:mm:ss.sss such that the representation of the date Jan 01,
2000 00:00:00.000 would be 2000-01-01T00:00:00.000."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = "D1 RATE"
UNIT = "COUNT"
DATA_TYPE = "REAL"™
START_BYTE = 33
BYTES =4
MISSING = 1.0E+32
DESCRIPTION = "The D1 rate is approximately

porportional to the omnidirectional flux of electrons with kinetic
energy > ~1MeV. To obtain greater accuracy, the D1 calibration
tables (see catalog) should be applied."

END_OBJECT = COLUMN

A.29.5 TABLE Variations

This section addresses a number of variations on the basic TABLE object that arise when
TABLES appear in data files with other objects, or where file attributes may differ from the one
row-one record approach recommended above. The variations discussed below are equally
applicable to the other TABLE-type objects, SERIES and SPECTRUM.

This section is not intended to be a complete reference for TABLE variations. Within the
following examples, some illustrate a recommended data modelling approach, some illustrate
alternate approaches, and other examples are included solely to document their existence.

A.29.5.1 Record blocking in Fixed Length TABLES

In the PDS recommended TABLE format, ROW_BYTES = RECORD_BYTES, but this is not
always achievable. TABLEs are sometimes packaged with other objects in the same file, or
binary data may be blocked into larger records, both resulting in cases where the TABLE row
size will not match the file record width.

Rows in either ASCII or binary tables may be either larger or smaller than the physical record
size specified by the RECORD_BYTES keyword. Regardless of the relationship between row
size and record size, the RECORD_BYTES keyword must always reflect the actual physical
record size, while ROW_BYTES must always be the logical size of one row of the TABLE
object.

A-128 Appendix A. PDS Data Object Definitions

A.295.11 Example: Binary Table with ROW_BYTES > RECORD_BYTES

The following label fragment illustrates a case in which the record size of the file is smaller than
the row size of the TABLE. Note that the table rows may straddle record boundaries. Each
object, however, must begin on a record boundary, so it is possible that some padding may be
required between the end of the TABLE object and the beginning of the IMAGE object,
depending on the number of rows in the TABLE:

RECORD_TYPE = FIXED_LENGTH <—— 800 —>» Record
RECORD_BYTES = 800 1
ATABLE =(" IMAGE. IMG", 1) Row1
AIMAGE =(" IMAGE. IMG",7) | 2
R 9 N — 3
OBJECT = TABLE k= ___Row2 | :
INTERCHANGE_FORMAT = BINARY = :
ROW_BYTES = 1200 7
END_OBJECT = TABLE IMAGE
OBJECT = IMAGE
SAMPLES = 800
SAMPLE_BITS -8
END_OBJECT = IMAGE
A.295.1.2 Example: ASCII Table with ROW_BYTES < RECORD_BYTES

The label fragment below illustrates a case in which the row size of the TABLE is smaller than
the record size of the file. It is not required that the file record size be an integral multiple of the
table row size; as illustrated above, table rows may straddle record boundaries. Also as above, it
is possible that some padding will be required to ensure that the subsequent SERIES object
begins on a record boundary.

RECORD_TYPE
RECORD_BYTES

FIXED_LENGTH
800

~TABLE (""EXAMPLE.TAB",1)

NSERIES (""EXAMPLE.TAB'",1214)

OBJECT = TABLE Row1 |CFj LF[ROWZ CR | LF
INTERCHANGE_FORMAT = ASCII - - - === === ==+
ROW_BYTES = 400

END_OBJECT = TABLE

OBJECT = SERIES TABLE
INTERCHANGE_FORMAT = ASCII
ROW_BYTES = 800 SERIES

Appendix A. PDS Data Object Definitions A-129

END_OBJECT = SERIES

A.29.5.1.3 Example: Binary Table with ROW_BYTES < RECORD_BYTES

It is often the case that a data object such as a TABLE is preceeded by a header containing
observational parameters or, as frequently happens with TABLEs, a set of column headings. The
label below illustrates a case in which a HEADER object containing a single 500-byte row
preceeds a TABLE having 1032-byte records. The file is physically blocked into records of
32,500 bytes. Note that in this case the HEADER record is not padded out to the full block size.
Instead, a byte offset (rather than a record offset) is used to indicate the start of the TABLE
object. (This example also includes COLUMN definitions contained in an external format file, a
fragment of the contents of which is also shown below, following the label.)

32492
byte 1 501 ¥ Rassid
HEADER [Row1 | . . . Row31| R 1
Row 32 2

________ Jrow 1425 46

32500

A

PDS_VERSION_ID PDS3

/* FILE CHARACTERISTICS */
RECORD_TYPE

RECORD_BYTES

FILE_RECORDS

~HEADER

~TABLE

FIXED_LENGTH

32500

46

('ADF01141.3",1)
('ADF01141.3",501<BYTES>)

/* IDENTIFICATION KEYWORDS */

DATA_SET_ID ""MGN-V-RDRS-5-CDR-ALT/RAD-V1.0"
PRODUCT_ID "ADF01141.3"

TARGET_NAME VENUS

SPACECRAFT_NAME MAGELLAN

""RADAR SYSTEM"
PRIMARY_MISSION
1991-07-23T06:16:02.000
1141

UNK

INSTRUMENT _NAME
MISSION_PHASE_NAME
PRODUCT_CREATION_TIME
ORBIT_NUMBER
START_TIME

A-130

STOP_TIME =
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
HARDWARE_VERSION_ID
SOFTWARE_VERSION_ID
UPLOAD_ID =
NAVIGATION_SOLUTION_ID =
DESCRIPTION =
describing, in time order,
during an orbit of the Mag

/* DATA OBJECT DEFINITION DESCR
OBJECT =
HEADER_TYPE =
BYTES =
END_OBJECT =

OBJECT
INTERCHANGE_FORMAT
ROWS
COLUMNS =
ROW_BYTES
ASTRUCTURE

END_OBJECT =

END

Contents of format file "ADFTBL.FMT":

OBJECT =
NAME =
START_BYTE =
DATA TYPE =
BYTES =
UNIT =
DESCRIPTION =

identifies the label and 1
(SFDU) . ™"
END_OBJECT =

OBJECT =
NAME
START_BYTE
DATA_TYPE
BYTES
UNIT =
DESCRIPTION

Appendix A. PDS Data Object Definitions

UNK

UNK

UNK

01

02

MO356N

"1D = MO361-12 "

"This file contains binary records
each altimeter footprint measured
ellan radar mapper."

IPTIONS */
HEADER
SFDU

500

HEADER

TABLE

BINARY

1425

40

1032
"ADFTBL.FMT"
TABLE

COLUMN

SFDU_LABEL_AND_LENGTH

1

CHARACTER

20

“N/A™

"The SFDU_label _and_length element
ength of the Standard Format Data Unit

COLUMN

COLUMN
FOOTPRINT_NUMBER
21

LSB_INTEGER

=4

"NZA™

= "The footprint_number element provides a

signed integer value. The altimetry and radiometry processing
program assigns footprint O to that observed at nadir at periapsis.

The remaining footprints are

located along the spacecraft nadir

track, with a separation that depends on the Doppler resolution of
the altimeter at the epoch at which that footprint is observed. Pre-

periapsis footprints will be
periapsis footprints will be

assigned negative numbers, post-
assigned positive ones. A loss of

Appendix A. PDS Data Object Definitions A-131

several consecutive burst records from the ALT-EDR will result in
missing footprint numbers."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = DERIVED_THRESH_DETECTOR_INDEX
START_BYTE = 1001
DATA_TYPE = LSB_UNSIGNED_INTEGER
BYTES =4
UNIT = "N/A"
DESCRIPTION = "The derived_thresh_detector_index

element provides the value of the element in
range_sharp_echo_profile that satisfies the altimeter threshold
detection algorithm, representing the distance to the nearest object
in this radar footprint in units of 33.2 meters, modulus a 10.02
kilometer altimeter range ambiguity."

END_OBJECT = COLUMN

A.29.5.14 Example: PDS Recommended Method for Dealing with Odd-Sized Headers

The preceding format may be difficult to deal with in some cases because of the odd-sized
header preceeding the TABLE object. The recommended approach to this situation is pad the
HEADER object out to an integral multiple of the TABLE row size, and then let
RECORD_BYTES = ROW_BYTES. Modifying the above case accordingly would yield the
following:

<+—1032 — Record

HEADER \\\\ 1
B _R0£1_ | 2
B _Rolv 2_ N 3
TABLE
Row 1425 1426

RECORD_TYPE FIXED_LENGTH

RECORD_BYTES = 1032
FILE_RECORDS = 1426
~HEADER = (""ADF01141.3",1)
~TABLE = ("'ADF01141.3",2)

/* DATA OBJECT DEFINITIONS */

A-132 Appendix A. PDS Data Object Definitions

OBJECT = HEADER
HEADER_TYPE = SFDU
BYTES = 500
END_OBJECT
OBJECT = TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 1425
COLUMNS = 40
ROW_BYTES = 1032
ASTRUCTURE = "ADFTBL.FMT"
END_OBJECT
END
A.29.5.1.5 Alternate Format — Rows on Record Boundaries

The following label fragment and illustration provide a second alternate data organization for the
preceding example. In this example, a record size of 30,960 is used to hold 30 rows of the
TABLE. Again the 500-byte HEADER uses only a portion of the first record.

Ro;1471 [—-- ;AF:OE;u:zsm 49

RECORD_TYPE FIXED_LENGTH

RECORD_BYTES = 30960
FILE_RECORDS = 49

~HEADER = (""ADF01141.3",1)
~TABLE = ("'ADF01141.3')

/* DATA OBJECT DEFINITIONS */

OBJECT
HEADER_TYPE

HEADER
SFDU

Appendix A. PDS Data Object Definitions A-133

BYTES = 500
END_OBJECT = HEADER
OBJECT = TABLE

INTERCHANGE_FORMAT = BINARY

ROWS = 1425

COLUMNS = 40

ROW_BYTES = 1032

~STRUCTURE = "ADFTBL.FMT"
END_OBJECT = TABLE

A.29.5.2 Multiple TABLES in a Single Data File

A single data product file may contain several ASCII or binary TABLES, each with a different
logical row size. There are several possible approaches to formatting such a product file,
depending on whether the product contains binary or ASCII data. When all the TABLES in the
data file are ASCII tables there are two formatting options: fixed-length file records or stream
records. When binary data are involved, even if only in a single TABLE, fixed-length file
records are mandatory.

A.295.2.1 Example: Multiple ASCII tables — Fixed-Length Records

In the case of a series of ASCII TABLE objects with varying ROW_BYTES values, a fixed-
length record file may be generated by padding all rows of all TABLES out to the length of the
longest rows by adding blank characters between the end of the last COLUMN and the
<CR><LF> record delimiters.

When this approach is used, RECORD_TYPE is FIXED_LENGTH and RECORD_BYTES =

ROW_BYTES.
<— 800 >»<—200 —>
| | |
RECORD_TYPE = FIXED_LENGTH | Lo
RECORD_BYTES = 1000 | Lo
.- A_TABLE Sparei &4,
OBJECT = A _TABLE I |
INTERCHANGE_FORMAT = ASCI I | Lo
ROW_BYTES = 1000 | Lo
END_OBJECT = A_TABLE :
| el
OBJECT = B_TABLE 'y
INTERCHANGE_FORMAT = ASCI B_TABLE &4
ROW_BYTES = 1000 : :
END_OBJECT = B_TABLE .

< 1000 ——>»

Note that each TABLE object has the same value of ROW_BYTES, even though in the smaller
table the rightmost bytes will be ignored. Alternately, the filler bytes may be documented as
ROW_SUFFIX_BYTES. Say, for example, that in the above case B_TABLE only required 780
bytes for its rows. The following definition for B_TABLE marks the last 220 bytes of each row
as suffix bytes:

A-134 Appendix A. PDS Data Object Definitions

OBJECT = B_TABLE
INTERCHANGE_FORMAT = ASCII
ROW_BYTES = 780
ROW_SUFFIX_BYTES = 220
A.29.5.2.2 END OBJECT =B TABLE
A.29.5.2.2 Example: Multiple ASCII tables — Stream Records

Sometimes padding TABLE records out to a common fixed length creates more problems than it
solves. When this is true each TABLE should retain its own ROW_BYTES value, without
padding, and the file RECORD_TYPE is set to STREAM. RECORD_BYTES should be
omitted. The following label fragment illustrates this situation.

RECORD_TYPE = STREAM : :
o el
OBJECT = A_TABLE A_TABLE |G, 4
INTERCHANGE_FORMAT = ASCII Lo
ROW_BYTES = 802 Lo
... —
END_OBJECT = A_TABLE -
_ I
OBJECT = B_TABLE el
INTERCHANGE_FORMAT = ASCII B_TABLE 10 |
ROW_BYTES = 1000 (I
[| |
END_OBJECT = B_TABLE -
«——1000 ———>
A.29.5.2.3 Example: Multiple Binary Tables — Fixed-Length Records
When binary data are involved the file records must be fixed-length. <«——800 — <200 —

The records of the smaller TABLE(S) are padded, usually with null
characters, out to the maximum ROW_BYTES value in the file. The
padding bytes are accounted for in the TABLE definition using one of
two methods: either by defining a COLUMN called “SPARE” to
define the number and location of these spare bytes, or by using the
ROW_SUFFIX_BYTES keyword, as in the case of multiple ASCII
tables. In the following example, the first table, A_TABLE, has a
logical row length of 800 bytes. Each row has been padded out to
1000 bytes, the length of the B_ TABLE rows, with a 200-byte B_TABLE

SPARE column:
RECORD_TYPE
RECORD_BYTES

|

|

|
A_TABLE ! Spare

|

|

|

FIXED_LENGTH
1000

~—— 1000 —

Appendix A. PDS Data Object Definitions A-135

OBJECT = A_TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 1000
OBJECT = COLUMN

NAME = "TIME TAG"
DATA_TYPE = TIME
START_BYTE =1
BYTES = 23
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = "'SPARE"
DATA_TYPE = "N/A"
START_BYTE = 801
BYTES = 200
END_OBJECT = COLUMN

END_OBJECT = A_TABLE

OBJECT = B_TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 1000

END_OBJECT = B_TABLE

A.29.5.3 ROW_PREFIX or ROW_SUFFIX Use

ROW_PREFIX_BYTES and ROW_SUFFIX_BYTES are provided for dealing with two
situations:

1. When a TABLE object is stored in parallel with another data object, frequently an
IMAGE. In this case, each physical record of the file contains a TABLE row as one part
of the record and an IMAGE line as the other part.

2. When a TABLE has had each of its rows padded out to a fixed length larger than the
logical row size of the table.

Each method is illustrated below.

A.29.5.3.1 Example: Parallel TABLE and IMAGE objects

The following label fragment illustrates a file with fixed-length records, each of which contains
one row of a TABLE data object and one line of an IMAGE object. This is a common format for
providing ancillary information applicable to each IMAGE line. In the TABLE object the bytes
belonging to the IMAGE are accounted for as ROW_SUFFIX_BYTES. In the IMAGE object the
bytes belonging to the TABLE row are accounted for as LINE_PREFIX_BYTES.

A-136 Appendix A. PDS Data Object Definitions

RECORD_TYPE = FIXED_LENGTH <— 800 - <— 200 — Record
RECORD_BYTES = 1000 Row 1 line 1 "
OBJECT = TABLE

INTERCHANGE_FORMAT= BINARY IMAGE

ROW_BYTES = 200
END_OBJECT = TABLE

TABLE

OBJECT = IMAGE

LINE_SAMPLES = 800

SAMPLE_BITS = 8

LINE_PREFIX_BYTES = 200
END_OBJECT = IMAGE Row 800 | Line 800 800

<—— 1000 —

Note that in each object the total size of the logical record plus all prefix and suffix bytes is equal
to the file record size. That is:

RECORD_BYTES = ROW_BYTES + ROW_PREFIX BYTES + ROW_SUFFIX_BYTES
and

RECORD_BYTES = (LINE_SAMPLES * SAMPLE_BITS / 8) + ROW_PREFIX_BYTES +
ROW_SUFFIX_BYTES

A.295.4 CONTAINER Object use

Complex TABLEs may contain a set of columns of different data types which repeat a number of
times in the row. In this case a CONTAINER object, which groups a set of inhomogeneous
COLUMN objects, may be used to provide a single definition for the repeating group. Section
A.8 contains an example of a TABLE object which makes use of a CONTAINER object.

A.2955 Guidelines for SPARE fields

Some TABLE objects contain spare bytes embedded in the record but not included in any
COLUMN object definition. They may be there for spacing or alignment purposes, or they may
have been reserved in the original data record for future use. Regardless of their origin, PDS
recommends that all such spare bytes be documented as COLUMNSs in the TABLE definition in
the interests of documentation and validation. Spare bytes may be included in both binary and
ASCII table objects. Guidelines for dealing with spare bytes in both cases follow.

A.295.6 SPARE fields - Binary Tables

Appendix A. PDS Data Object Definitions A-137

The following guidelines apply to spare byte fields in binary table objects:

* Embedded spare fields must be explicitly defined in COLUMN objects, except when the
spare field appears at the beginning or end of a row where ROW_PREFIX_BYTES or
ROW_SUFFIX_BYTES is used.

e Spare COLUMNSs must have DATA_TYPE = “N/A”.
e Multiple spare COLUMNSs may all specify NAME = “SPARE”.
* Spare bytes may occur as prefix or suffix bytes in the rows.

* Prefix or suffix spares may be identified either with a spare COLUMN object or by use of
ROW_PREFIX_BYTES or ROW_SUFFIX_BYTES

The following examples illustrate the various situations.

A.29.5.6.1 Example: SPARE field embedded in a Binary TABLE

In the following label fragment, a spare column defines a series of bytes reserved for future use
in the middle of the data record:

RECORD_TYPE FIXED_LENGTH

RECORD_BYTES = 1000 Columni. .. | 99
[
| |
OBJECT = TABLE TABLI E
INTERCHANGE_FORMAT = BINARY (I
ROW_BYTES = 1000 o !
COLUMNS = 99 18|
10 !
| |
OBJECT = COLUMN (.
NAME = SPARE (.
COLUMN_NUMBER = 87 P!
START_BYTE = 793 <— 800— 20
BYTES =21 <« 1000 —
DATA_TYPE = "N/A"
DESCRIPTION = "Reserved for future user by Mission Ops."
END_OBJECT = COLUMN
OBJECT = COLUMN
END_OBJECT = TABLE

A.29.5.6.2 Example: Spares at end of a Binary TABLE - Explicit 'SPARE' Column

A-138 Appendix A. PDS Data Object Definitions

In this label fragment, spare bytes have been included on the end of each record of the table.
These bytes are described as an additional COLUMN at the end of the record.

RECORD_TYPE FIXED_LENGTH

RECORD_BYTES 1000
Column1 e« 99
OBJECT = TABLE |
INTERCHANGE_FORMAT = BINARY |
ROW_BYTES = 1000
COLUMNS = 99 I
TABLE |
L
OBJECT = COLUMN | o
COLUMN_NUMBER =1 | EE
NAME = "TIME TAG"
| D
END_OBJECT |
I
OBJECT = COLUMN |
COLUMN_NUMBER = 99
NAME = SPARE 20
BYTES = 20 <4+—1000—p
DATA_TYPE = "N/A"
START_BYTE = 981
END_OBJECT = COLUMN
END_OBJECT = TABLE
A.29.5.6.3 Example: Spares at end of a Binary TABLE - ROW_SUFFIX_BYTES use

This fragment illustrates the same physical file layout as the previous example, but in this case
the spare bytes are defined using the ROW_SUFFIX_BYTES keyword, rather than defining an
additional spare COLUMN.

Columni «-- 98

|

|
RECORD_TYPE = FIXED_LENGTH I >
RECORD_BYTES = 1000 TABLE | T
=
| ('D|
OBJECT = TABLE =
INTERCHANGE_FORMAT = BINARY |8

ROW_BYTES = 980 |

ROW_SUFFIX_BYTES = 20 |
COLUMNS = 98 20

END_OBJECT = TABLE 1000

Appendix A. PDS Data Object Definitions A-139

A.295.7 SPARE fields - ASCII Tables with Fixed Length Records

In ASCII tables, field delimiters (") and (,) and the <CR><LF> pair are considered part of the
data, even though the COLUMN objects attributes do not include them. Spare bytes in ASCI|I
tables may contain only the blank character (ASCII decimal code 32). The following guidelines
apply to spare byte fields in ASCII table objects:

Embedded spares are not allowed.

Spares are allowed at the end of each row of data.

The <CR><LF> follows the spare data.

There are no delimiters (commas or quotes) surrounding the spares.

Spares at the end of the data can be ignored (like field delimiters and <CR><LF>) or they
can be identified

(1) inthe Table DESCRIPTION; or

(2) by using ROW_SUFFIX BYTES (note that these bytes should not be included in
the value of ROW_BYTEYS)

A.2957.1 Example - SPARE field at end of ASCII TABLE - Table description note
RECORD_TYPE = FIXED_LENGTH l 1000 I
RECORD_BYTES = 1000 l

I

OBJECT = TABLE I

INTERCHANGE_FORMAT = ASCI11 |

ROW_BYTES = 1000 |
TABLE |Spare|%|4

DECRIPTION ="This table contains 980 |

bytes of table data followed by 18 bytes of |

blank spares. Bytes 999 and 1000 contain the |

<CR><LF> pair." |

“—— 980—> < 18P

A-140 Appendix A. PDS Data Object Definitions

A.29.5.7.2 Example - Spares at end of a ASCII TABLE - ROW_SUFFIX use
<4—980—» «—20—»
|
RECORD_TYPE = FIXED_LENGTH [
RECORD_BYTES = 1000 |
I
OBJECT = TABLE |
INTERCHANGE_FORMAT = ASCI11 TABLE |Spare o L_'L
ROW_BYTES = 980 O
ROW_SUFFIX_BYTES = 20 I
--- I
DECRIPTION ="This table contains |
980 bytes of table data followed by 20
bytes of spare data of which the last |
two bytes, bytes 999 and 1000, contain
the <CR><LF> pair."
END_OBJECT = TABLE ROW_SUFFIX

A.29.5.8 SPARE fields - ASCII Tables with STREAM Records

Spare fields are not used with ASCII Tables in STREAM record formats. In STREAM files, the
last data field explicitly defined with a COLUMN object is followed immediately by the
<CR><LF> pair. Since there is no use for spares at the end of the data, and embedded spares are
not allowed in ASCII tables, spares are not applicable here.

Appendix A. PDS Data Object Definitions A-141

A30 TEXT

The TEXT object describes a file which contains plain text. It is most often used in an attached
label, so that the text begins immediately after the END statement of the label. PDS recommends
that TEXT objects contain no special formatting characters, with the exception of the carriage
return/line feed sequence and the page break. Tab characters are discouraged, since they are
interpreted differently by different programs.

Use of the carriage-return/line-feed sequence (KCR><LF>) is required for cross-platform
support. PDS further recommends that text lines be limited to 80 characters, with delimiters, to
facilitate visual inspection and printing of text files.

NOTE: The TEXT object is most often used for files describing the contents of an archive
volume or the contents of a directory, such as AAREADME.TXT, DOCINFO.TXT,
VOLINFO.TXT, SOFTINFO.TXT, etc. These files must be in plain, unmarked ASCII text and
always have a file extension of “.TXT”. Documentation files that are in plain ASCII text, on the
other hand, must be described using the DOCUMENT object. (See the definition of the
DOCUMENT Object in Section A.12.)

The required NOTE field should provide a brief introduction to the TEXT.

A.30.1 Required Keywords

1. NOTE
2. PUBLICATION_DATE

A.30.2 Optional Keywords

1. INTERCHANGE_FORMAT

A.30.3 Required Objects

None

A.30.4 Optional Objects

None

A-142 Appendix A. PDS Data Object Definitions

A.30.5 Example

The example below is a portion of an AAREADME.TXT file.

PDS_VERSION_ID = PDS3
RECORD_TYPE = STREAM
OBJECT = TEXT
PUBLICATION_DATE = 1991-05-28
NOTE = "Introduction to this CD-ROM volume."
END_OBJECT = TEXT
END

GEOLOGIC REMOTE SENSING FIELD EXPERIMENT

This set of compact read-only optical disks (CD-ROMs) contains a data
collection acquired by ground-based and airborne instruments during the
Geologic Remote Sensing Field Experiment (GRSFE). Extensive
documentation is also included. GRSFE took place in July, September,
and October, 1989, in the southern Mojave Desert, Death Valley, and the
Lunar Crater Volcanic Field, Nevada. The purpose of these CD-ROMs is to
make available in a compact form through the Planetary Data System (PDS)
a collection of relevant data to conduct analyses in preparation for the
Earth Observing System (EOS), Mars Observer (MO), and other missions.
The generation of this set of CD-ROMs was sponsored by the NASA
Planetary Geology and Geophysics Program, the Planetary Data System
(PDS) and the Pilot Land Data System (PLDS).

This AAREADME.TXT file is one of the two nondirectory Ffiles located in
the top level directory of each CD-ROM volume in this collection. The
other file, VOLDESC.CAT, contains an overview of the data sets on these
CD-ROMs and is written in a format that is designed for access by
computers. These two Files appear on every volume in the collection.
All other files on the CD-ROMs are located in directories below the top
level directory

Appendix A. PDS Data Object Definitions A-143

A.31 VOLUME

The VOLUME object describes a physical or logical unit used to store or distribute data products
(e.g., a magnetic tape, CD-ROM disk, or floppy disk) that contain directories and files. The
directories and files may include documentation, software, calibration and geometry information
as well as the actual science data.

A.31.1 Required Keywords

8. DATA_SET ID

9. DESCRIPTION

10. MEDIUM_TYPE

11. PUBLICATION_DATE
12. VOLUME_FORMAT

13. VOLUME_ID

14. VOLUME_NAME

15. VOLUME_SERIES_NAME
16. VOLUME_SET_NAME
17. VOLUME_SET _ID

18. VOLUME_VERSION_ID
19. VOLUMES

A.31.2 Optional Keywords

13. BLOCK_BYTES

14. DATA_SET_COLLECTION_ID
15. FILES

16. HARDWARE_MODEL_ID

17. LOGICAL_VOLUMES

18. LOGICAL_VOLUME_PATH_NAME
19. MEDIUM_FORMAT

20. NOTE

21. OPERATING_SYSTEM_ID

22. PRODUCT_TYPE

23. TRANSFER_COMMAND_TEXT
24. VOLUME_INSERT_TEXT

A.31.3 Required Objects

2. CATALOG
3. DATA_PRODUCER

A-144 Appendix A. PDS Data Object Definitions

A.31.4 Optional Objects

2. DIRECTORY
3. FILE
4. DATA_SUPPLIER

A.31.5 Example 1 (Typical CD-ROM Volume)

Please see the example in Section A.5 for the CATALOG object.

A.31.6 Example 2 (Tape Volume)

The following VOLUME object example shows how directories and files are detailed when a
volume is stored on an ANSI tape for transfer. This form of the VOLUME object should be used
when transferring volumes of data on media which do not support hierarchical directory
structures (for example, when submitting a volume of data on tape for premastering to CDROM).
The VOLDESC.CAT file will contain the standard volume keywords, but the values of
MEDIUM_TYPE, MEDIUM_FORMAT and VOLUME_FORMAT should indicate that the
volume is stored on tape.

In this example two files are defined in the root directory of the volume, VOLDESC.CAT and
AAREADME.TXT. The first DIRECTORY object defines the CATALOG directory which
contains meta data in the included, individual catalog objects. In this example, all the catalog
objects are concatenated into a single file, CATALOG.CAT. The second DIRECTORY object
defines an INDEX subdirectory containing three files: INDXINFO.TXT, INDEX.LBL, and
INDEX.TAB. Following that directory, the first data directory is defined. Note that the
SEQUENCE_NUMBER keyword indicates the physical sequence of the files on the tape
volume.

PDS_VERSION_ID

OBJECT
VOLUME_SERIES_NAME
VOLUME_SET_NAME

PDS3

VOLUME

“MISSION TO MARS"

“MARS DIGITAL IMAGE MOSAIC AND DIGITAL
TERRAIN MODEL™
USA_NASA_PDS_VO_2001_TO_VO_2007

VOLUME_SET_ID

VOLUMES =7

VOLUME_NAME = "MDIM/DTM VOLUME 7: GLOBAL COVERAGE"
VOLUME_ID = VO_2007

VOLUME_VERSION_ID = "VERSION 1"
PUBLICATION_DATE = 1992-04-01

DATA_SET_ID = "V01/V02-M-VIS-5-DTM-V1.0"
MEDIUM_TYPE = "8-MM HELICAL SCAN TAPE"
MEDIUM_FORMAT = "2 GB"

VOLUME_FORMAT = ANSI

HARDWARE_MODEL_ ID = "WAX 11/750"
OPERATING_SYSTEM_ID = "VMS 4.6"

Appendix A. PDS Data Object Definitions A-145

DESCRIPTION = "This volume contains the Mars Digital
Terrain Model and Mosaicked Digital Image Model covering the entire
planet at resolutions of 1/64 and 1/16 degree/pixel. The volume

also contains Polar Stereographic projection files of the north and
south pole areas from 80 to 90 degrees latitude; Mars Shaded Relief
Airbrush Maps at 1/16 and 1/ 4 degree/pixel; a gazetteer of Mars
features; and a table of updated viewing geometry files of the
Viking EDR images that comprise the MDIM."

MISSTON_NAME
SPACECRAFT_NAME
SPACECRAFT_ID

OBJECT
INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

END_OBJECT

OBJECT
~CATALOG
END_OBJECT

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
NAME

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT
END_OBJECT

OBJECT
NAME

OBJECT

VIKING
{VIKING_ORBITER_1,VIKING_ORBITER_2}
{v01,Vv02}

DATA_PRODUCER

"U.S.G.S. FLAGSTAFF"

""BRANCH OF ASTROGEOLOGY"

"Eric M. Eliason"”

"IMAGE PROCESSING"

"Branch of Astrogeology

United States Geological Survey
2255 North Gemini Drive
Flagstaff, Arizona. 86001 USA"
DATA_PRODUCER

CATALOG
"CATALOG.CAT™
CATALOG

FILE
"VOLDESC.CAT"
STREAM

1

FILE

FILE
"AAREADME . TXT"
STREAM

2

FILE

DIRECTORY
CATALOG

FILE
"CATALOG.CAT™
STREAM

3

FILE
DIRECTORY

DIRECTORY
DOCUMENT

FILE

A-146

FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT
END_OBJECT

OBJECT
NAME

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FILE_NAME
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
SEQUENCE_NUMBER
END_OBJECT
END_OBJECT

OBJECT
NAME

OBJECT
FILE_NAME
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
SEQUENCE_NUMBER
END_OBJECT
END_OBJECT

END_OBJECT
END

A.31.7 Example 3 (Logical Volumes in an Archive VVolume)

Appendix A. PDS Data Object Definitions

"VOLINFO.TXT"
STREAM

4

FILE

FILE
"DOCINFO.TXT"
STREAM

5

FILE
DIRECTORY

DIRECTORY
INDEX

FILE
"INDXINFO.TXT"
STREAM

6

FILE

FILE
"INDEX.LBL"
STREAM

7

FILE

FILE
"INDEX.TAB"
FIXED_LENGTH
512

6822

8

FILE
DIRECTORY

DIRECTORY
MGOONXXX

FILE
""MGOONO12. IMG""
FIXED_LENGTH
964

965

10

FILE

DIRECTORY

VOLUME

Appendix A. PDS Data Object Definitions A-147

The following examples illustrate the use of the VOLUME object in the top level and at the
logical volume level of an archive volume. Note that the VOLUME object is required at both
levels.

In these examples, the CD-ROM is structured as three separate logical volumes with root
directories named PPS/, UVS/ and RSS/. An additional SOFTWARE directory is supplied at
volume root for use with all logical volumes.

A.31.7.1 Logical Volumes — Volume Object (root level)

The example below, illustrates the use of the VOLUME obiject at the top level of a CD-ROM
(i.e., a physical volume) containing several logical volumes. Note the values of the keywords
DATA_SET_ID, LOGICAL_VOLUMES, and LOGICAL_VOLUME_PATH_NAME, which
list the complete set of values relevant to this volume.

PDS_VERSION_ID

OBJECT
VOLUME_SERIES_NAME
VOLUME_SET_NAME

PDS3

VOLUME

"WOYAGERS TO THE OUTER PLANETS"
"PLANETARY RING OCCULTATIONS FROM

VOYAGER"

VOLUME_SET_ID = "USA_NASA_PDS_VG_3001"

VOLUMES =1

MEDIUM_TYPE = "CD-ROM"

VOLUME_FORMAT = "1S0-9660"

VOLUME_NAME = "VOYAGER PPS/UVS/RSS RING OCCULTATIONS'"
VOLUME_ID = "VG_3001"

VOLUME_VERSION_ID = "VERSION 1"

PUBLICATION_DATE = 1994-03-01

DATA_SET_ID {""VG2-SR/UR/NR-PPS-4-0CC-V1.0",
"VG1/VG2-SR/UR/NR-UVS-4-0CC-V1.0",
"VG1/VG2-SR/UR/NR-RSS-4-0CC-V1.0"}

LOGICAL_VOLUMES 3

LOGICAL_VOLUME_PATH_NAME {"PPS/", "UVS/", "RSS/"}

DESCRIPTION "This volume contains the Voyager 1 and
Voyager 2 PPS/UVS/RSS ring occultation and ODR data sets. Included
are data files at a variety of levels of processing, plus ancillary
geometry, calibration and trajectory files plus software and

documentation.

This CD-ROM is structured as three separate logical volumes with
root directories named PPS/, UVS/ and RSS/. An additional SOFTWARE
directory is supplied at volume root for use with all logical
volumes."

OBJECT
INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

DATA_PRODUCER

"PDS RINGS NODE"

""NASA AMES RESEARCH CENTER"

"DR. MARK R. SHOWALTER"
"RINGS"

"Mail Stop 245-3

NASA Ames Research Center
Moffett Field, CA 94035-1000"

A-148

A.31.7.2

LOGICAL_VOLUME_PATH_NAME contain only the values relevant to the current logical

END_OBJECT

OBJECT
DATA_SET_ID
LOGICAL_VOLUME_PATH_NAME
AMISSION_CATALOG
AINSTRUMENT_HOST_CATALOG
~AINSTRUMENT_CATALOG
ADATA_SET_COLLECTION_CATALOG
ADATA_SET_CATALOG
~REFERENCE_CATALOG
~PERSONNEL_CATALOG

END_OBJECT

OBJECT
DATA_SET_ID
LOGICAL_VOLUME_PATH_NAME
~AMISSION_CATALOG
AINSTRUMENT_HOST_CATALOG
~AINSTRUMENT_CATALOG
ADATA_SET_COLLECTION_CATALOG
ADATA_SET_CATALOG
~REFERENCE_CATALOG
~PERSONNEL_CATALOG

END_OBJECT

OBJECT
DATA_SET_ID
LOGICAL_VOLUME_PATH_NAME
~AMISSION_CATALOG
AINSTRUMENT_HOST_CATALOG
AINSTRUMENT_CATALOG
ADATA_SET_COLLECTION_CATALOG
ADATA_SET_CATALOG
~REFERENCE_CATALOG
~PERSONNEL_CATALOG

END_OBJECT

END_OBJECT
END

Appendix A. PDS Data Object Definitions

DATA_PRODUCER

CATALOG
"VG2-SR/UR/NR-PPS-4-0CC-V1.0"
"PPS/"
"MISSION.CAT"
"INSTHOST .CAT""
"INST.CAT"
"DSCOLL.CAT"
"DATASET .CAT"
"REF.CAT"
"PERSON.CAT"
CATALOG

CATALOG

"VG1/VG2-SR/UR/NR-UVS-4-0CC-V1.0"

"uvs/st
"MISSION.CAT"
"INSTHOST .CAT""
"INST.CAT"
"DSCOLL.CAT"
"DATASET .CAT"
"REF.CAT"
"PERSON.CAT"
CATALOG

CATALOG

"VG1/VG2-SR/UR/NR-RSS-4-0CC-V1.0"

"RSS/"
"MISSION.CAT"
"INSTHOST .CAT""
"INST.CAT"
"DSCOLL.CAT"
"DATASET .CAT"
"REF.CAT"
"PERSON.CAT"
CATALOG

VOLUME

Logical Volumes — VVolume Object (logical volume level)

The example below, illustrates the use of the VOLUME object required at the top level of a
logical volume. Note that at this level the keywords DATA_SET_ID and

volume. Also, the keyword LOGICAL_VOLUMES does not appear here.

PDS_VERSION_ID
OBJECT

VOLUME_SERIES_NAME
VOLUME_SET_NAME

PDS3

VOLUME

"WOYAGERS TO THE OUTER PLANETS"
"PLANETARY RING OCCULTATIONS
FROM VOYAGER™

Appendix A. PDS Data Object Definitions A-149

VOLUME_SET_ID = "USA_NASA_PDS_VG_3001"

VOLUMES =1

MEDIUM_TYPE = "CD-ROM"

VOLUME_FORMAT = "1S0-9660"

VOLUME_NAME = "WOYAGER PPS/UVS/RSS RING
OCCULTATIONS™

VOLUME_ID = "VG_3001"

VOLUME_VERSION_ID = "VERSION 1"

PUBLICATION_DATE = 1994-03-01

DATA_SET_ID = "VG2-SR/UR/NR-PPS-4-0CC-V1.0"

LOGICAL_VOLUME_PATH_NAME = "PPS/"

DESCRIPTION = "This logical volume contains the

Voyager 2 PPS ring occultation data sets. Included are data files at
a variety of levels of processing, plus ancillary geometry,
calibration and trajectory files plus software and documentation."

OBJECT = DATA_PRODUCER
INSTITUTION_NAME = "PDS RINGS NODE™
FACILITY_NAME ""NASA AMES RESEARCH CENTER"

FULL_NAME = "DR. MARK R. SHOWALTER"
DISCIPLINE_NAME = "RINGS"
ADDRESS TEXT = "Mail Stop 245-3
NASA Ames Research Center
Moffett Field, CA 94035-1000"
END_OBJECT = DATA_PRODUCER
OBJECT = CATALOG
DATA_SET _ID = "VG2-SR/UR/NR-PPS-4-0CC-V1.0"
LOGICAL_VOLUME_PATH_NAME = "PPS/"
AMISSION_CATALOG = "MISSION.CAT"

NMINSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"
~NINSTRUMENT_CATALOG "INST.CAT"
~DATA_SET_COLLECTION_CATALOG "DSCOLL.CAT"
~DATA_SET_CATALOG = "'DATASET.CAT"

~REFERENCE_CATALOG = "REF.CAT"
~PERSONNEL_CATALOG = "PERSON.CAT"
END_OBJECT = CATALOG
END_OBJECT = VOLUME

END

A-150 Appendix A. PDS Data Object Definitions

A 1

AAREADME.TXT, A-144
ALIAS object
definition, A-3
ARRAY object, A-1, A-36
definition, A-4
ASCII tables, A-124
AXIS_ITEMS, A-4
AXIS_NAME, A-80

8 1

BAND_BIN, A-78

BAND _STORAGE_TYPE, A-65

BANDS, A-65

binary tables, A-127
spare bytes, A-127

BIT_COLUMN object, A-18, A-127
definition, A-8

BIT_ELEMENT object, A-1
definition, A-11

BYTES, A-16, A-55, A-124

A B

CATALOG object
definition, A-12
CHECKSUM, A-67
COLLECTION object, A-1, A-4, A-6, A-36
definition, A-15
COLUMN object, A-3, A-8, A-85, A-123
and CONTAINER, A-20
definition, A-16
vectors, A-16
CONTAINER object, A-16
definition, A-20
in TABLE, A-139

%
data objects, A-1

ALIAS, A-3
ARRAY, A-4

A-152

BIT _COLUMN, A-8
BIT ELEMENT, A-11
CATALOG, A-12
COLLECTION, A-15
COLUMN, A-16
CONTAINER, A-20
DATA PRODUCER, A-27
DATA SUPPLIER, A-29
DIRECTORY, A-31
DOCUMENT, A-33
ELEMENT, A-36
FIELD, A-38
FILE, A-41
GAZETTEER_TABLE, A-45
HEADER, A-55
HISTOGRAM, A-57
HISTORY, A-60
IMAGE, A-64, A-74
INDEX_TABLE, A-69
PALETTE, A-74
QUBE, A-77
SERIES, A-85
SPECTRAL_QUBE, A-90
SPECTRUM, A-112
SPICE_KERNEL, A-115
SPREADSHEET, A-118
TABLE, A-123
TEXT, A-144
VOLUME, A-146
DATA PRODUCER object, A-29
definition, A-27
DATA _SET object, A-41
DATA SET ID, A-150, A-151
DATA SUPPLIER object, A-27
definition, A-29
DIRECTORY object, A-147
definition, A-31
DOCINFO.TXT, A-144
document
ASCII version, A-33
DOCUMENT object
definition, A-33
documentation
file labelling
DOCUMENT object, use of, A-33
documents

Appendix A. PDS Data Object Definitions

Appendix A. PDS Data Object Definitions A-153

and DOCUMENT object, A-33

& 1

ELEMENT object, A-1, A-6
definition, A-36

- 1

field delimiters, A-142
FIELD object

definition, A-38

example, A-39, A-40

in SPREADSHEET, A-38
FILE object, A-31

definition, A-41

implicit, A-41

table of required and optional elements, A-42
FILE_NAME, A-41
FILE_STATE, A-78

.

GAZETTEER_TABLE object
definition, A-45

GROUP
in HISTORY object, A-60
in QUBE, A-78

I

HEADER object, A-132
definition, A-55
HISTOGRAM object, A-78
definition, A-57
HISTORY object
and QUBE, A-78
definition, A-60

I

IMAGE object, A-74, A-78

and PALETTE, A-74

definition, A-64

stored with TABLE object, A-138
IMAGE_MAP_PROJECTION object, A-78
INDEX_TABLE

A-154 Appendix A. PDS Data Object Definitions

contents, A-69
INDEX_TABLE object

definition, A-69
INDEX_TYPE, A-69
Integrated Software for Imagers and Spectrometers (ISIS), A-107
INTERCHANGE_FORMAT, A-123
ISIS Software

QUBE object,